

UT TO SOUTH FORK FINAL MONITORING REPORT YEAR 1 OF 5 2006

EEP Project # 435 Alamance County, North Carolina

> Original Design Firm: ARCADIS G&M of North Carolina, Inc. 801 Corporate Center Drive, Suite 300 Raleigh, NC 27607

NCDENR-EEP 1652 Mail Service Center Raleigh, NC 27699 **Monitoring Firm:**

1025 Wade Avenue Raleigh, NC 27605 Phone: (919) 789-9977 Project Manager: Phillip Todd ptodd@sepiengineering.com

Executive Summary

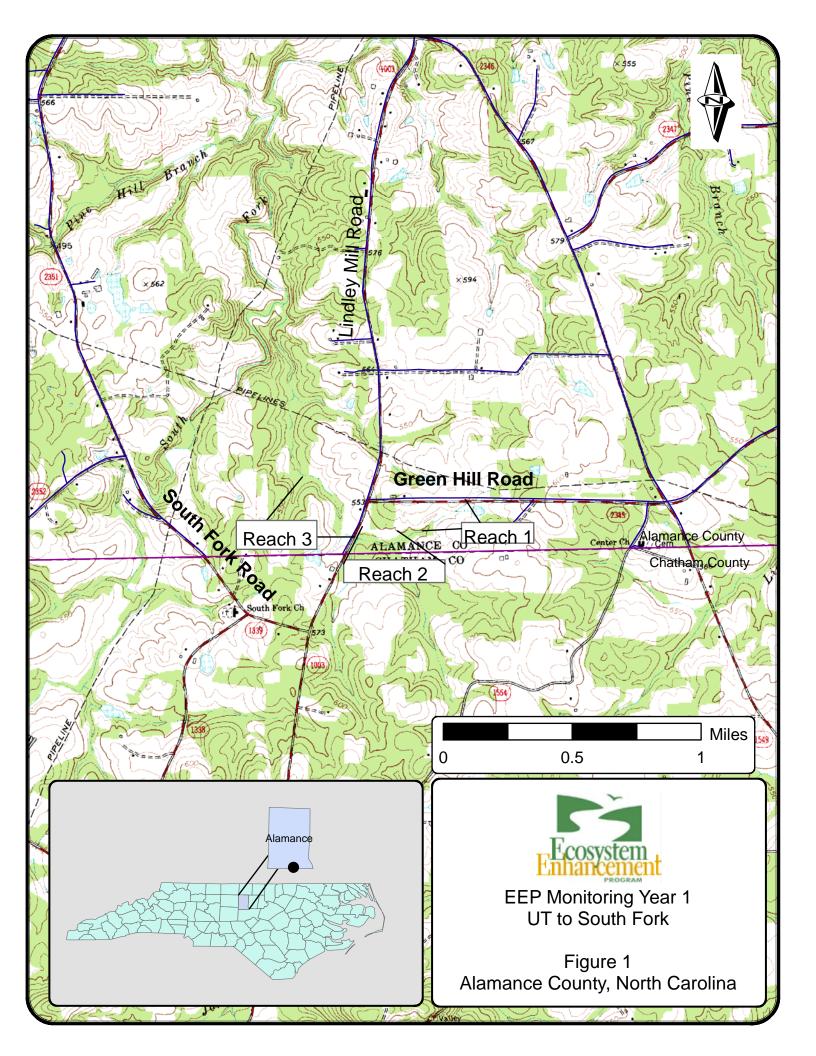
The North Carolina Ecosystem Enhancement Program (EEP) restored the UT to South Fork in 2004. This project is located in the southern portion of Alamance County, NC. The different reaches flow through former pasture areas and wooded sections. Prior to restoration, cattle had unlimited access to the stream channels which created areas of severe bank erosion and loss of vegetation. Since the restoration has been completed, the livestock have been fenced out of the stream with the exception of a few crossings that are used throughout the year to move the cattle from one field to another.

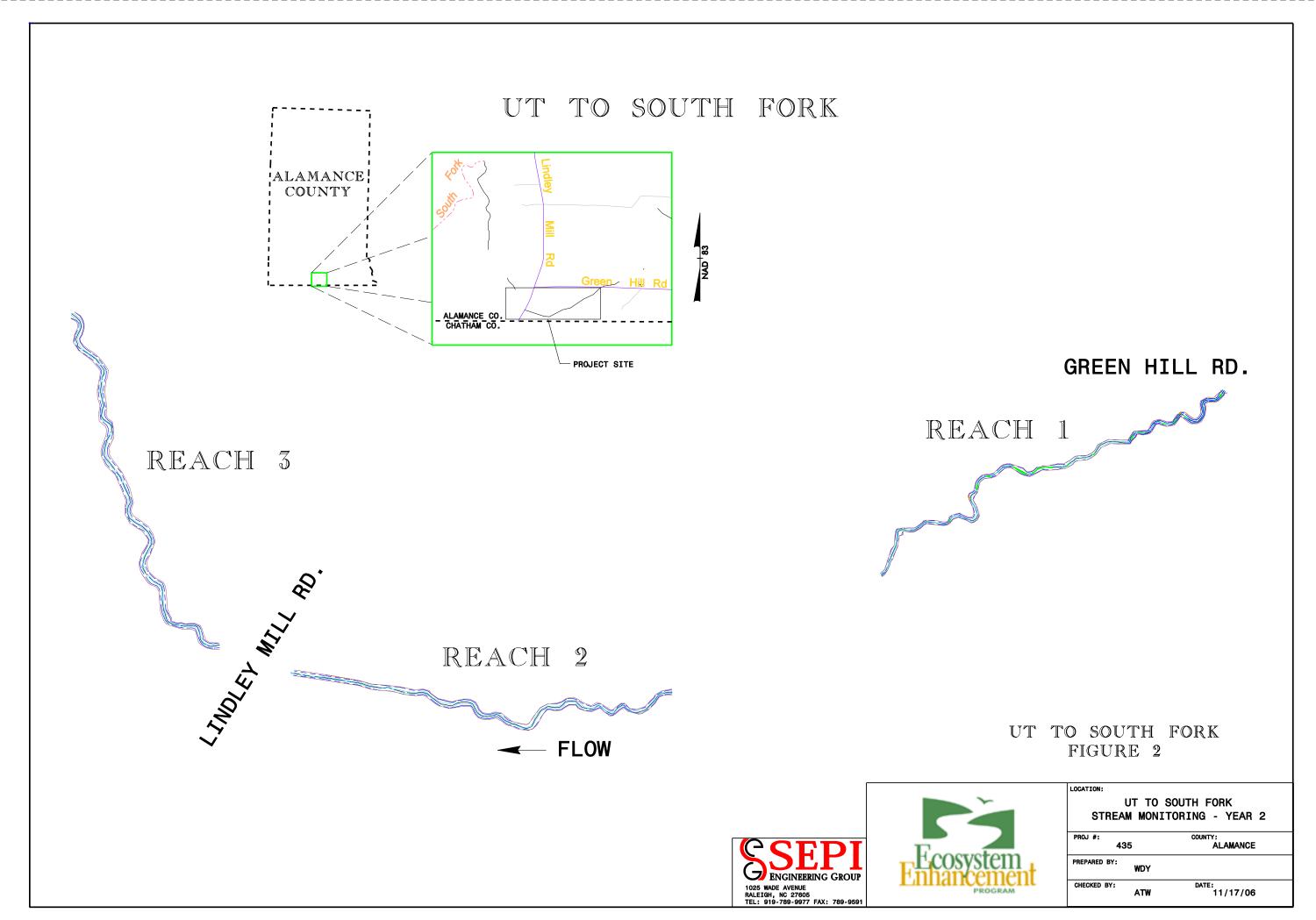
There were several goals for this stream and buffer restoration project. Goals of the stream project included: reducing the bank erosion; reducing nutrient runoff on the site; stabilizing stream channel banks by planting vegetation; and, helping the stream reach its equilibrium though the proper design ratios for dimension, pattern, and profile.

This report documents the data collected for Year 1 monitoring. Monitoring benchmarks were installed for cross-sections and vegetation plots in three reaches along the restored channel. The data in this report includes geomorphic and vegetative components. The geomorphic data collected includes: longitudinal profiles, cross-sections, pebble counts and photo points along all three reaches. The vegetation data collected includes: stem count species and numbers for all of the vegetative plots throughout the project. The geomorphic data collected for Year 1 provides a baseline for future monitoring years to be compared to. At this time, the data cannot be used to conclude problem areas for the stream; however, visually, some areas are facing aggradation, and some structures are believed to be installed too high. Future monitoring in Year 2 will aid in determining if the aggradation is a problem that needs to be addressed, and the structures noted for problems will need to be repaired.

As for the vegetation component, there is concern with the plots meeting the quantitative goal of 260 stems/acre. The number of stems/acre in VP #1, 2, 4 and 5 are already below the Year 5 goal of 260 stems/acre. The stem/acre for VP #3 is 280 stems/acre. The other plots have good stems/acre count.

TABLE OF CONTENTS


1.0	PROJEC	CT BACKGROUND	1	l
	1.1	Project Location		l
	1.2	Project Setting		l
	1.3	Project Objectives		
	1.4	History and Background		
2.0	PROJEC	CT MONITORING METHODOLOGY	e	5
	2.1	Vegetation Methodology	e	5
	2.2	Stream Methodology		
		2.2.1 Longitudinal Profile	6	5
		2.2.2 Permanent Cross-Sections	e	5
		2.2.3 Pebble Counts	e	5
	2.3	Photo Documentation		7
3.0	PROJEC	CT CONDITIONS AND RESULTS		7
	3.1	Vegetation		1
		3.1.1 Soils Data		
		3.1.2 Vegetative Problem Area Plan View		
		3.1.3 Stem Counts	8	3
	3.2	Stream	•••••••	
		3.2.1 Longitudinal Profile		
		3.2.2 Permanent Cross-Sections		
		3.2.3 Pebble Counts		
	3.3	Photo Documentation		
	3.4	Stream Problem Areas		
4.0	OVERA	LL CONCLUSION FOR YEAR 2 MONITORING	ç)
REFERI	ENCES		10)
	a			
TABLE			,	
		Aitigation Structure and Objectives Table		
		Activity and Reporting History		
		Contract Table		
		Background Table		
		nary Soil Data		
		ive Problem Areas		
		ounts for each species arranged by plot		
			Appendix B3)
		and Sediment Export Estimates (not included in this year's data)	Annondia D'	,
		Problem Areas rical Stream Feature Visual Stability Assessment		
		ne Morphology and Hydraulic Summary		
		phology and Hydraulic Summary		
Table A	m. wor	photogy and regulating monitoring Summary	Appendix D:	,
FIGUR	ES			


Figure 1: Vicinity Map 3 Figure 2: Reaches of Restoration Monitoring 4

APPENDICES

Appendix A	
Appendix A1: Photolog – Vegetation Problem Areas	A1
Appendix A2: Photolog – Vegetation Plots	
Appendix A3: Vegetation Data Tables	A3
Appendix B	
Appendix B1: Photolog – Stream Problem Areas .	B1
Appendix B2: Photolog – Cross Sections and Photo Points	B2
Appendix B3: Stream Data Tables	B3
Appendix B4: Stream Cross Sections	B4
Appendix B5: Stream Longitudinal Profile	B5
Appendix B6: Stream Pebble Counts	B6

Appendix C: Plan View Sheets

1.0 PROJECT BACKGROUND

1.1 <u>Project Location</u>

This project is near Snow Camp, North Carolina in south-central Alamance County. To reach the site from Raleigh, go west on US 64 towards Siler City. Take the exit for NC 87 and turn right, heading north. Take a left onto Chapel Hill-Greensboro Road. At the intersection with Lindley Mill Road take a left towards the community of Sutphin. The site is near the intersection with Green Hill Road before the Chatham County line. To access Reach 1, turn left onto Green Hill Road, you will cross the beginning of that reach. Reach 2 and 3 can be accessed off of Lindley Mill Road. Figure 1 shows the location of the site, and Figure 2 shows the location of each reach surveyed.

1.2 Project Setting

The project lies in a mostly open, abandoned agricultural field where cattle once had unlimited access to the stream. Since restoration, the stream has been fenced off, and cattle do not have access to the channel. The surrounding pastures are used for cattle grazing or crop production (hay). Less than 25% of the stream restoration area lies within a sparsely forested buffer area. The surrounding topography is gentle rolling hills.

1.3 <u>Project Objectives</u>

The goal of this stream restoration project is to improve water quality in the Cape Fear River Basin. The UT to South Fork is typical of other streams in this area, exhibiting instability and degradation in response to current and historical land use practices. The goal of improving water quality will be accomplished by re-establishing a stable dimension, pattern, and profile to the stream. Stabilization of the streambed and banks will reduce the amount of sediment entering the river basin. In addition, re-establishment of a permanent vegetated riparian buffer (consisting of native species) will help decrease nutrient input. This buffer will provide shading for wildlife habitat within the stream and along the stream buffer.

Table I. Project Mitigation Structure and Objectives Table												
UT to South Fork/EEP Project Number 435												
Project Segment or Mitigation Linear Footage or												
Reach ID	Туре	Approach*	Acreage Stationing*	Comment								
Subreach 1	Restoration	ΡI	10+00 to 26+03	New channel construction								
Subreach 2	Restoration	ΡΙ	26+03 to 33+13	Modified pattern, dimension & profile								
	Enhancement											
Subreach 3	Level I	P II, P III	33+13 to 42+00	Modified dimension & profile								
Subreach 4	Restoration	P I, P II	42+00-to 70+37	Modified pattern, dimension & profile								
Note: "P" refers	to Priority Level											

"*" - determinations made from the Restoration Design Report for the project.

1.4 History and Background

Table II. Project Activity and Reporting History										
UT to S	outh Fork/EEP Proje	ect Number 435								
Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery							
Restoration Plan			September 2002							
Final Design - 90%										
Construction										
Temporary S&E mix applies to entire project area										
Permanent seed mix applies to reach/segments 1&2	Raw data being acquired by EEP and will be included in the 2007 monitoring report for the site.									
Containerized and B&B plantings for reach/segments 1&2										
Mitigation Plan/ As-built (Year 0 Monitoring - baseline)										
Year 1 monitoring	December 1, 2006	June 1, 2006	November 2006							
Year 2 monitoring	December 1, 2007									
Year 3 monitoring	December 1, 2008									
Year 4 monitoring	December 1, 2009									
Year 5 monitoring	December 1, 2010									
Year 5+ monitoring										

Table III	. Project Contract Table
UT to South F	ork/EEP Project Number 445
Designer	ARCADIS G&M
	801 Corporate Center Drive, Suite 300
	Raleigh, NC 27607
Construction Contractor	*
Planting Contractor	*
Seeding Contractor	*
Monitoring Performers	SEPI Engineering Group
_	2300 Rexwoods Drive, Suite 370
	Raleigh, NC 27607
Stream Monitoring POC	Amanda Todd (919) 789-9977
Vegetation Monitoring POC	Phillip Todd (919) 789-9977
Wetland Monitoring POC	N/A

"*" denotes raw data being acquired by EEP and will be included in the 2007 monitoring report for the site

Table IV. Project Background Table									
UT to South Fork/EEP Project	et Number 445								
Project County	Alamance County, NC								
Drainage impervious cover estimate (%)	5								
Stream Order	1								
Physiographic Region	Piedmont								
Ecoregion	Carolina Slate Belt								
Rosgen Classification of As-built	Е								
Cowardin Classification	N/A								
Dominant soil types	Georgeville-Heron-Alamance & Orange-Efland-Herndon								
Reference site ID	UT Wells Creek & UT Varnal Creek								
USGS HUC for Project and Reference	03030002 Haw River								
NCDWQ Sub-basin for Project and Reference	03-04-06								
NCDWQ classification for Project and Reference	C, NSW								
Any portion of any project segment 303d listed?	no								
Any portion of any project segment upstream of a 303d listed segment?	no								
Reasons for 303d listing or stressor	no								
% of project easement fenced	50%								

2.0 PROJECT MONITORING METHODOLOGY

2.1 <u>Vegetation Methodology</u>

The following methodology was used for the stem count. The configuration of the vegetation plots was marked out with tape to measure 10 meters by 10 meters (or equivalent to 100 square meters) depending on buffer width. The planted material in the plot was marked with flagging. The targeted vegetation was then identified by species, and the number of each species was recorded in a field book.

2.2 <u>Stream Methodology</u>

The project monitoring for the stream channel included a longitudinal survey, cross-sectional surveys, pebble counts and photo documentation. These measurements were taken at each reach. The stationing was based on thalweg. The methodology for each portion of the stream monitoring is described in detail below.

2.2.1 Longitudinal Profile

The longitudinal profile of the restored stream was surveyed for each reach. The heads of features, such as riffles, runs, pools, maximum pool, and glide, were surveyed in the longitudinal profile. At the head of each feature, thalweg, water surface, edge of water, left and right bankfull, and left and right top of bank were surveyed. The average water-surface slope for each feature, pool length, and pool to pool spacing were calculated from this survey. The surveyed features assisted in drawing out the plan view of the restored stream. Stream pattern data (i.e., meander length, radius of curvature, belt width, and sinuosity) were also measured from the plan view.

The pools that were constructed downstream of the cross vanes were surveyed in the longitudinal profile. These pools were grouped in to calculate the pool-to-pool spacing and the pool-to-pool spacing to bankfull width ratio calculations.

2.2.2 Permanent Cross Sections

Four permanent cross sections (two riffles and two pools) were surveyed at Reach 1. Two permanent cross sections (one riffle and one pool) were surveyed at Reach 2 and six permanent cross sections (3 riffles and 3 pools) at Reach 3. The beginning and end of each permanent cross section was originally marked with a wooden stake and metal conduit. Cross sections were installed perpendicular to the stream flow. The survey noted all changes in slopes, tops of both banks, left and right bankfull, edges of water, thalweg and water surface. The bankfull cross sectional areas were calculated for each cross section based on the drainage area and compared to the design parameters. The cross sections were plotted and graphed. The bankfull mean depth, cross sectional area, width-to-depth ratios and entrenchment ratios were also calculated.

2.2.3 Pebble Counts

A modified Wolman pebble count (Rosgen 1993) consisting of 50 samples conducted at each permanent cross section. The cumulative percent was graphed, and the d50 and d84 calculated.

2.3 Photo Documentation

Photo points were taken from one corner at each vegetation plot. The chosen corner varies from each vegetation plot, and its location was documented on the plan view sheets. Permanent photo points were established during Year 1 monitoring with metal conduit. Photographs were taken at these points during the field surveys. Photos were taken in the direction indicated on the monitoring plan view sheets.

3.0 **PROJECT CONDITIONS AND RESULTS**

3.1 <u>Vegetation</u>

3.1.1 Soils Data

Series	Max Depth (in.)	% Clay on Surface	К	Т	OM %	
Chewacla (Cd)	80	5.0 - 20.0	0.48	*	1.0 - 4.0	
Efland (EaB2)	86	<<<<< I	nformation u	navailable >	·>>>>>	
Georgeville (GaB2)	63	5.0 - 27.0	0.48	*	0.5 - 2.0	
Georgeville (GbD3)	63	27.0 - 35.0	0.35	*	0.5 - 2.0	
Herndon (HdB2)	68	5.0 - 27.0	0.48	*	0.5 - 1.0	
Local Alluvial (Lc)		<<<<<]	High variabili	ity of data >	>>>>>>	
Orange (ObB2)	55	10.0 - 27.0	0.44	*	1.0 - 3.0	
Orange (ObC2)	55	10.0 - 27.0	0.44	*	1.0 - 3.0	

* The soils information was not available from the Natural Resources Conservation Service (NRCS)

3.1.2 Vegetative Problem Area Plan View

There is good herbaceous vegetation growth along all of the monitored stream reach. In many areas, fescue was prevalent, preventing the establishment of the planted bare root trees. This was particularly noted in Vegetation Plot (VP) #2 where no bare roots were noted. In VP #4, only a single bare root of green ashe was located. In VP #9 and #10, fescue dominates portions of the plot, but not all of the plots. The vegetative plots and problem areas are shown on the plan view sheets in Appendix C.

Although not considered to be problem now, Japanese honeysuckle was noted in several areas. It was noted in VP #1, #4, #5, #6, and #7 (the side of the plot opposite the stream). These are "watch" areas.

Other areas to "watch" are a pokeberry clump near VP #2, privette located outside of VP #5 and rose near VP #6.

Hedge morning glory (*Convolvulus sepium*) has entered VP #7. This species, although a native, appears to be wrapping itself around many of the planted bare roots.

Table VI. Vegetative Problem Areas												
Feature/Issue	Station # /	Probable Cause	Photo #									
	Range											
Bare Flood Plain	13+20 - Reach 2	Seed wash and compact										
	Right Bank	ground	3									
Invasive/Exotic		species migration from										
Populations		upland off of property	4									

3.1.3 Stem Counts

The planted bare root stems in Reach 1 are a concern. No stems were located in VP #2, one stem in VP #4 and few stems were located in VP #1, 3, and 5. The number of stems/acre in VP #1, 2, 4 and 5 are already below the Year 5 goal of 260 stems/acre. VP #3 is a "watch" area as the stem/acre was 280. It was noted that outside of the vegetation plots for Reach 1, as you travel downstream, and VP# 5 in Reach 2, the number of bare root stems increased substantially.

3.2 <u>Stream</u>

At this time, it is not possible to compare the data collected for the longitudinal survey or crosssections. Monitoring in 2006 represented the first year of monitoring when everything was "setup" and installed. Comparisons can and will be made in Year 2 (2007) back to this data. From this year's data, the problem areas that were observed in the field were marked on the plan sheets in Appendix C.

3.2.1 Longitudinal Profile

The longitudinal profile for Year 1 monitoring in this report sets-up the "base line" data for future monitoring comparisons. No conclusions can be made at this time from the longitudinal profile. The longitudinal profile is shown in Appendix B5.

3.2.2 Permanent Cross Sections

The permanent cross-sections installed for this monitoring data set establishes the "base line" data for future comparisons to be made to. No conclusions can be made at this time. The cross-section graphs are located in Appendix B4.

3.2.3 Pebble Counts

Since this is Year 1 monitoring, no comparisons of the pebble count data can be made at this time. Currently, the site is a sand bed channel. Over time the bed material should coarsen up. The pebble count data is located in Appendix B6.

3.3 Photo Documentation

Photos taken of the vegetation problem areas are found in Appendix A1, and photos of the vegetation plots are in Appendix A2. The photographs taken at the marked photo point locations and at the cross-sections are provided in Appendix B2. Problem area photographs are also provided in Appendix B1.

3.4 <u>Stream Problem Areas</u>

Table X for each reach located in Appendix B3, describes the problem areas, station numbers, and respective probable causes. A majority of the problems appear to be from vegetation growing in the channel. The vegetation appears to be forcing the channel to narrow up and/or changing the bed elevation and slope. It appears that livestock have had access to the channel since construction of the stream project. This access may have caused some of the initial instream bank slumping and bar formation. The bank slumping appears to be stabilizing; however, the mid-channel vegetated bars are still prevalent throughout some portions of the channel. Another problem with the stream is that several structures are "up" out of the current water flow at the time of survey and piping is occurring around others.

4.0 **RECOMMENDATIONS AND CONCLUSIONS**

Since this is Year 1 monitoring, no conclusions from comparisons over time can be made at this time for the stream. There are several areas with stream problems, especially at the lower end of Reach 1, where structures are failing. The water level was low at the time of survey. Several of the structures seemed "too high" with water flowing under the structures, not over them, and/or with water piping around the structures After Year 2 monitoring data is collected, any changes will be discussed at that time in more detail.

There are several concern areas with regard to the vegetation plots. The number of stems/acre in VP #1, 2, 4 and 5 are already below the Year 5 goal of 260 stems/acre. The stem/acre for VP #3 is 280 stems/acre.

REFERENCES

ARCADIS G&M of North Carolina, Inc (ARCADIS). September 2002. Restoration Design Report, Unnamed Tributary to South Fork.

DeLorme. 1997. The North Carolina Atlas and Gazateer.

- Harman, W.H., et al. 1999. Bankfull Hydraulic Geometry Relationships for North Carolina Streams. AWRA Wildland Hydrology Symposium Proceedings. Edited by D.S. Olson and J.P. Potyondy. AWRA Summer Synposium. Bozeman, MT.
- North Carolina Ecosystem Enhancement Program. September 2005. Content, Format and Data Requirements for EEP Monitoring Reports.
- Rosgen, D.L. 1994. A Classification of Natural River. Catena, Volume 22: 166-169, Elsevier Science, B.V. Amsterdam.
- U.S. Department of Agriculture, Soil Conversation Service. April 1960. Soil Survey Alamance County, North Carolina.
- U.S. Department of Army, Corps of Engineers. 2003. *Stream Mitigation Guidelines*. <u>http://www.saw.usace.army.mil/wetlands/Mitigation/stream_mitigation.html</u>

APPENDIX A1

PHOTOLOG VEGETATION PROBLEM AREAS

APPENDIX A1 PHOTOLOG VEGETATION PROBLEM AREAS UT TO SOUTH FORK

Photo 1: Fescue dominates left side of plot

Photo 2: Lack of Bare Roots along Reach 1

Photo 3: Bare area in floodplain

Photo 4: Morning Glory wraps around sycamore tree

APPENDIX A2

PHOTOLOG VEGETATION PLOTS

APPENDIX A2 PHOTOLOG UT to South Fork VEGETATION PLOTS

Vegetation Plot 1

Vegetation Plot 4

Vegetation Plot 2

Vegetation Plot 3

Vegetation Plot 5

Vegetation Plot 6

Vegetation Plot 7

Vegetation Plot 8

Vegetation Plot 9

Vegetation Plot 10

Vegetation Plot 11

Vegetation Plot 12

APPENDIX A3

VEGETATION DATA TABLES

HILL

		······································	71		01	6	8								Cephalanthus occidentalis Shrubs
					li II	/									шпшошшь ѕпило
								!		-					צמןוא אואגע
													_		Trees
	L														орипВәи ләәу
											ואע ע				นทางถุกา าออง
			in ya	nt			<u> </u>	<u>_</u> j(/)				-	_		องมีเน อากุรอ
<u> </u>		<u>_</u>	11												caroliniana
		<u> </u>		1	<u> </u>	μ	- 111	١١٩				_			anninigriv soryqsoiO
	<u> </u>		<u> </u>		יואן ד ואן ואן	ابلا الله	11. 11	min		111	1	111			pojubajásuuəd snujxpaj
					/	, <u>,</u>						- 10			ds unojuodkų
			11 JH	<u>M(</u>	цп	un Im									องมีเน รบอาชิท
·	<u> </u>			n		n		חזו חזו היע	اله اللا						silainabiooo sunala
									In	и	ļ				sisuəpuvuvə snənquivə
			<u> 1111</u>	h	1 111	+					L		<u> </u>		лекспг шісрапхіі
		<u> </u>						1							ds snovenG
					<u> </u>		<u>1 111</u>		n	·	<u> </u>			L	Snewcns alba
<u> </u>				<u> </u>				<u> </u>						-	อนอะบุวอนซ รทนแก
<u> </u>							<u> </u>								
			<u> </u>	<u> </u>		<u> </u>			L					ļ	Fotal including live stake
	<u> </u>			<u> </u>			<u> </u>	<u> </u>			ļ			<u> </u>	stems per acre
	<u> </u>				┨────		<u> </u>				<u> _</u>				fotal exluding live stake
· · · · · · · · · · · · · · · · · · ·	-				<u> </u>		<u> </u>	<u> </u>			Ì`				etens per acre
<u> </u>															د . ی
			111	<u>+</u> #Ti					ואג זייע ווייע						
								<u> </u>							N'S

57

Species		Table VII. Stem counts for each species arranged by plot Plots													Survival %**
~F	1	2	3	4	5	6	7			9 10		12	Initial Totals*	Teur T Totuis	~
Shrubs	1	2	3	4	5	0	1	0	9	10	11	12			
Cephalanthus occidentalis															
Cornus ammomum						(LS 15)			1 (LS 1)	2 (LS 5)	(LS 5)	(LS 5)		3 (LS 31)	
Salix nigra						(LS 13)	1		I (LS I)	2 (LS 5)	(LS 5)	(L3 5)		5 (L5 51)	
Trees															
Acer negundo											1			1	
Acer rubrum				7										7	
Betula nigra							4	2	1	13	3	8		31	
Carpinus caroliniana												2		2	
Diospyros virginiana						1	5	4	2	3	1	2		18	
Fraxinus pennsylvanica	3		4	1	3		13	12	13	16	2	3		70	
Hypericum sp.			3							1				4	
Juglans nigra								1	10	5	4	7		27	
Platanus occidentalis						10	13	2	2		2	3		32	
Sambucus canandensis					2	3								5	
Quercus michauxii								1	1	6	2	4		14	
Quercus sp.							1							1	
Quercus alba						2		6		2				10	
Ulmus americana							2				1			3	
Total including live state															
Total including live stake	3						39	28	31		21			259	
Stems per acre	120	0	280	320	200	1240	1560	1120	1240	2120	840				
Total exluding live stake	3	0	7	8	5	15	39	28	30	48	16	29		228	
Stems per acre	120	0	280	320	200	600	1560	1120	1200	1920	640	1160			

* Initial totals were not collected. Arcadis was not informed of the vegetation installation. The initial totals are unknown.

** Survival percentage for Year 1 cannot be computed because there is no initial total.

APPENDIX B1

PHOTOLOG STREAM PROBLEM AREAS

APPENDIX B1 REPRESENTATIVE STREAM PROBLEM AREAS

REACH 1

Aggradation below first cross-vane

REACH 2

Cattails growing in channel

REACH 3

Narrowing of channel/grass slump

Toe Erosion along left bank (photo taken looking upstream)

APPENDIX B2

PHOTOLOG OF CROSS-SECTIONS AND PHOTO POINTS

APPENDIX B2 PHOTOLOG REACH 2

Cross-Section 5: Looking Downstream

Cross-Section 6: Looking Downstream

Cross-Section 5: Looking Upstream

Cross-Section 6: Looking Upstream

Photo point 1: Looking Downstream

Photo point 1: Looking Upstream

Photo point 1: Looking at Channel

Photo point 2: Looking Downstream

Photo point 2: Looking Upstream

Photo point 2: Looking at Channel

Photo point 3: Looking Downstream

Photo point 4: Looking Downstream

Photo point 3: Looking Upstream

Photo point 4: Looking Upstream

Photo point 3: Looking at Channel

Photo point 4: Looking at Channel

Photo point 5: Looking Downstream

Photo point 6: Looking Downstream

Photo point 5: Looking Upstream

Photo point 6: Looking Upstream

Photo point 5: Looking at Channel

Photo point 6: Looking at Channel

Photo point 7: Looking Downstream

Photo point 7: Looking Upstream

Photo point 7: Looking at Channel

APPENDIX B2 PHOTOLOG REACH 1

Cross-Section 1: Looking Downstream

Cross-Section 2: Looking Downstream

Cross-Section 3: Looking Downstream

Cross-Section 1: Looking Upstream

Cross-Section 2: Looking Upstream

Cross-Section 3: Looking Upstream

Cross-Section 4: Looking Downstream

Cross-Section 4: Looking Upstream

Photo point 1: Looking at Channel

Photo point 1: Looking Downstream

Photo point 1: Looking Upstream

Photo point 2: Looking Downstream

Photo point 2: Looking Upstream

Photo point 2: Looking at Channel

Photo point 3: Looking Downstream

Photo point 3: Looking Upstream

Photo point 3: Looking at Channel

Photo point 4: Looking Downstream

Photo point 4: Looking Upstream

Photo point 4: Looking at Channel

Photo point 5: Looking Downstream

Photo point 5: Looking Upstream

Photo point 6: Looking Downstream

Photo point 6: Looking Upstream

Photo point 7: Looking Downstream

Photo point 7: Looking Upstream

Photo point 8: Looking Upstream

APPENDIX B2 PHOTOLOG REACH 3

Cross-Section 7: Looking Downstream

Cross-Section 7: Looking Upstream

Cross-Section 8: Looking Downstream

Cross-Section 8: Looking Upstream

Cross-Section 9: Looking Downstream

Cross-Section 9: Looking Upstream

Cross-Section 10: Looking Downstream

Cross-Section 10: Looking Upstream

Cross-Section 11: Looking Downstream

Cross-Section 11: Looking Upstream

Cross-Section 12: Looking Downstream

Cross-Section 12: Looking Upstream

Photo point 1: looking downstream

Photo point 2: looking downstream

Photo point 1: looking upstream

Photo point 2: looking upstream

Photo point 1: looking at channel

Photo point 2: looking at channel

Photo point 3: looking downstream

Photo point 4: looking downstream

Photo point 3: looking upstream

Photo point 4: looking upstream

Photo point 3: looking at channel

Photo point 4: looking at channel

Photo point 5: looking downstream

Photo point 5: looking upstream

Photo point 5: looking at channel

STREAM DATA TABLES

Date of Data Collection	Date of Occurrence	Method	Photo # (if available)
1/10/2007	Unknown	Crest Stage Gauge measurement of approximately 7" on stick (bottom of stick at bkf)	

	UT to South	Fork				
	Segment/Reach: 1	(1152 feet)				
Feature Category	Metric (per As-built and reference baselines)	(#Stable) Number Performing as Intended	Total Number per As-built	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Performance Mean or Total
A. Riffles	1. Present	23	28	NA	82%	
	2. Armor stable	22	28	NA	79%	
	3. Facet grade appears stable	23	28	NA	82%	
	4. Minimal evidence of embedding/fining	22	28	NA	79%	
	5. Length appropriate	22	28	NA	79%	80%
B. Pools	1. Present	29	29	NA	100%	
	2. Sufficiently deep	21	29	NA	72%	
	3. Length appropriate	20	29	NA	69%	80%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering	11	13	NA	85%	
	2. Downstream of meander (glide/inflection) centering	11	13	NA	85%	85%
D. Meanders	1. Outer bend in state of limited/controlled erosion	9	13	NA	69%	
	2. Of those eroding, # w/concomitant point bar formation	3	3	NA	100%	
	3. Apparent Rc within specifications	11	13	NA	85%	
	4. Sufficient floodplain access and relief	12	13	NA	92%	87%
E. Bed General	1. General channel bed aggradation areas (bar formation)	NA	NA	16/180	84%	
	2. Channel bed degradation - areas of increasing down cutting or head cutting	NA	NA	0/0	100%	92%
F. Bank Condition	1. Actively eroding, wasting, or slumping bank	NA	NA	3/15	98%	98%
G. Vanes / J Hooks etc.	1. Free of back or arm scour	29	50	NA	58%	
	2. Height appropriate	29	50	NA	58%	
	3. Angle and geometry appear appropriate	29	50	NA	58%	
	4. Free of piping or other structural failures	29	50	NA	58%	58%
H. Wads and Boulders	1. Free of scour	4	8	NA	50%	
	2. Footing stable	4	8	NA	50%	50%

	UT to South	Fork				
	Segment/Reach: 2	(1030 feet)				
Feature Category	Metric (per As-built and reference baselines)	(#Stable) Number Performing as Intended	Total Number per As-built	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Performance Mean or Total
A. Riffles	1. Present	13	13	NA	100%	
	2. Armor stable	13	13	NA	100%	
	3. Facet grade appears stable	13	13	NA	100%	
	4. Minimal evidence of embedding/fining	10	13	NA	77%	
	5. Length appropriate	10	13	NA	77%	91%
B. Pools	1. Present	14	14	NA	100%	
	2. Sufficiently deep	12	14	NA	86%	
	3. Length appropriate	12	14	NA	86%	90%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering	7	8	NA	88%	
	2. Downstream of meander (glide/inflection) centering	7	7	NA	100%	94%
D. Meanders	1. Outer bend in state of limited/controlled erosion	13	16	NA	81%	
	2. Of those eroding, # w/concomitant point bar formation	2	3	NA	67%	
	3. Apparent Rc within specifications	14	16	NA	88%	
	4. Sufficient floodplain access and relief	13	16	NA	81%	79%
E. Bed General	1. General channel bed aggradation areas (bar formation)	NA	NA	13/282	73%	
	2. Channel bed degradation - areas of increasing down cutting or head cutting	NA	NA	0/0	100%	87%
F. Bank Condition	1. Actively eroding, wasting, or slumping bank	NA	NA	3/18	98%	98%
G. Vanes / J Hooks etc.	1. Free of back or arm scour	20	28	NA	71%	
	2. Height appropriate	20	28	NA	71%	
	3. Angle and geometry appear appropriate	20	28	NA	71%	
	4. Free of piping or other structural failures	20	28	NA	71%	71%
H. Wads and Boulders	1. Free of scour	3	11	NA	27%	
	2. Footing stable	3	11	NA	27%	27%

	UT to South	Fork				
	Segment/Reach: 3	(1021 feet)				
Feature Category	Metric (per As-built and reference baselines)	(#Stable) Number Performing as Intended	Total Number per As-built	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Performance Mean or Total
A. Riffles	1. Present	16	16	NA	100%	
	2. Armor stable	14	16	NA	88%	
	3. Facet grade appears stable	14	16	NA	88%	
	4. Minimal evidence of embedding/fining	14	16	NA	88%	
	5. Length appropriate	14	16	NA	88%	90%
B. Pools	1. Present	19	19	NA	100%	
	2. Sufficiently deep	19	19	NA	100%	
	3. Length appropriate	14	19	NA	74%	91%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering	7	8	NA	88%	
	2. Downstream of meander (glide/inflection) centering	7	8	NA	88%	88%
D. Meanders	1. Outer bend in state of limited/controlled erosion	12	16	NA	75%	
	2. Of those eroding, # w/concomitant point bar formation	3	4	NA	75%	
	3. Apparent Rc within specifications	11	16	NA	69%	
	4. Sufficient floodplain access and relief	13	16	NA	81%	75%
E. Bed General	1. General channel bed aggradation areas (bar formation)	NA	NA	12/234	77%	
	2. Channel bed degradation - areas of increasing down cutting or head cutting	NA	NA	0/0	100%	89%
F. Bank Condition	1. Actively eroding, wasting, or slumping bank	NA	NA	5/72	93%	93%
G. Vanes / J Hooks etc.	1. Free of back or arm scour	30	30	NA	100%	
	2. Height appropriate	30	30	NA	100%	
	3. Angle and geometry appear appropriate	30	30	NA	100%	
	4. Free of piping or other structural failures	30	30	NA	100%	100%
H. Wads and Boulders	1. Free of scour	9	10	NA	90%	
	2. Footing stable	9	10	NA	90%	90%

	T	
	18	able X. Stream Problem Areas
Feature Issue	Station numbers	UT to South Fork, Reach 1 Suspected Cause
Aggradation (grass)	10+11.51	
J-Hook	10+18.53	Channel is narrowing
Aggradation (grass)	10+17+21	Angle or position of structure
riggradiation (grass)	10+32.59	
J-Hook	10+34.03	Channel is narrowing
J-Hook	10+52.24	Piping around structure
J-Hook	10+72.00	Missing center rock
J-Hook	10+95.76	Angle or position of structure
Aggradation (grass)	11+16.53	Loose rock
(gruss)	11+43.31	
J-Hook	11+50.29	Channel is narrowing
	11+51.86	Angle or position of structure
Bank Erosion (right bank)	11+60.15	
	11+63.81	Direction of flow onto bank. Reach makes sharp turn.
Aggradation (grass)	11+79.20	
	11+87.56	Channel is narrowing
Aggradation (grass)	12+07.44	
	12+16.35	Channel is narrowing
Aggradation (grass)	12+78.02	
	12+83.73	Channel is narrowing
Aggradation (grass)	13+05.06	
	13+13.43	Channel was perhaps built too wide and is trying to narrow itself up
Aggradation (grass)	14+15.78	
	14+22.23	Channel is narrowing
J-Hook	14+22.72	Piping around structure
Aggradation (grass)	14+89.59	
	14+92.80	Channel is narrowing
J-Hook Aggradation (grass)	14+91.73	Piping around structure
	15+01.22 15+03.15	Channel is narrowing
Rootwad	15+55.23	Structure exposed up out of water (appears to have installed to high.
Aggradation (grass)	15+28.96	
	15+81.01	Channel is narrowing
J-Hook	15+82.13	Piping around structure
Rootwad	15+93.31	Angle or position of structure
Rootwad Aggradation (grass)	15+95.14 15+98.02	Angle or position of structure
Aggradation (grass)	16+34.45	Channel was perhaps built too wide and is trying to narrow itself up
J-Hook	16+51.87 16+87.51	Angle or position of structure Angle or position of structure
J-Hook Aggradation (grass)	16+87.51 16+97.16	
	17+04.96	Channel is narrowing
J-Hook Aggradation (grass)	17+27.10 17+35.64	Missing center rock
	17+47.62	Channel is narrowing
J-Hook Bank Erosion (right bank)	17+67.30 17+70.60	Angle or position of structure
	17+75.04	Direction of flow onto bank from J-hook upstream
Cross-Vane	18+49.27	Piping around structure
J-Hook J-Hook	18+66.60 18+84.08	Structure exposed up out of water (appears to have installed to high. Structure exposed up out of water (appears to have installed to high.
Aggradation (grass)	18+95.86	
Bank Erosion (left bank)	19+04.12 19+05.52	Channel is narrowing Flow directed onto bank. Perhaps structure immediately downstream should have
which is voice (if it which is	19+06.83	been placed immediately upstream.
J-Hook	19+08.05	Structure exposed up out of water (appears to have installed to high.
J-Hook J-Hook	19+20.79 19+58.78	Structure exposed up out of water (appears to have installed to high. Structure exposed up out of water (appears to have installed to high.
Aggradation (grass)	20+19.57	
I Hook	20+22.37	Channel is narrowing Structure exposed up out of water (appears to have installed to high.
J-Hook Rootwad	20+22.97 20+39.28	Structure exposed up out of water (appears to have installed to high. Structure exposed up out of water (appears to have installed to high.
J-Hook	21+41.26	Structure exposed up out of water (appears to have installed to high.

	Tab	le X. Stream Problem Areas
	τ	JT to South Fork, Reach 2
Feature Issue	Station numbers	Suspected Cause
Rootwad	10+38.5	Angle and position of structure
Cross-Vane	10+48.96	
Aggradation (cattails)	10+82.48	
	11+06.33	Channel was perhaps built too wide and is trying to narrow itself up
Rootwad	11+11.59	Angle and position of structure
Aggradation	11+13.96	
	11 + 18.68	Channel is narrowing
Cross-Vane	11+19.36	Piping around structure
Aggradation	11+24.87	
	11+27.42	Channel is narrowing
J-Hook	11+38.59	Angle and position of structure
Rootwad	11+49.63	Structure exposed up out of water (appears to have installed to high).
Aggradation	11+67.35	
	12+19.12	Channel was perhaps built too wide and is trying to narrow itself up
J-Hook	11+71.26	Structure exposed up out of water (appears to have installed to high).
Rootwad	11 + 80.28	Structure exposed up out of water (appears to have installed to high).
Aggradation (willows)	12+32.28	
	12+37.43	Channel was perhaps built too wide and is trying to narrow itself up
Aggradation (cattails)	12+40.57	
	12+62.66	Channel is narrowing
J-Hook	12+96.40	Angle and position of structure
Bank Erosion (right bank)	13+03.79	
	13+05.03	Flow directed onto bank from structure immediately upstream
Rootwad	13+03.79	Structure exposed up out of water (appears to have installed to high).
Aggradation (cattails)	13+35.56	
	13+48.86	Channel is narrowing
Rootwad	14+26.22	Angle and position of structure
Cross-Vane	14+54.12	Piping around structure
Rootwad	15+04.20	Angle and position of structure
Bank Erosion (right bank)	15+04.62 15+08.00	Flow directed onto bank. Lack of protection by rootwads.
Rootwad	15+08.00	Angle and position of structure
Aggradation (grass)	15+45.44	
	15+52.24	Channel is narrowing
Aggradation (grass)	16+30.93	
/	16+40.76	Channel was perhaps built too wide and is trying to narrow itself up
Aggradation (grass)	16+59.06	
	17+75.32	Channel is narrowing
Bank Erosion (left bank)	17+55.60	
	17+60.89	Soil type or lack of vegetation. Perhaps built too wide and is trying to narrow up
Aggradation (cattails)	18+22.45	
	18+33.19	Channel is narrowing
Cross-Vane	18+62.65	Missing center rock
Aggradation (cattails)	18+63.72	
	18+73.72	Channel was perhaps built too wide and is trying to narrow itself up
Aggradation (cattails)	19+35.46	
	19+39.27	Channel is narrowing
Cross-Vane	20+28.46	Piping around structure

	Tabl	e X. Stream Problem Areas
	U	T to South Fork, Reach 3
Feature Issue	Station numbers	Suspected Cause
Aggradation (Cattails)	10+83.62	
	11+12.38	Channel is narrowing
Bank Erosion (right bank)	11+31.25	
	11+35.86	Soil type or lack of vegetation. Perhaps built too wide and is narrowing.
Rootwad	11+66.74	Angle and position of structure
Bank Erosion (left bank)	11+66.74	
	11+72.50	Back eddying due to rootwad directly upstream
Aggradation (Cattails)	11+82.20	
	11+89.10	Channel was perhaps built too wide and is trying to narrow itself up
Aggradation (grass)	12+10.90	
	12+30.32	Channel is narrowing
Aggradation (Cattails)	13+00.30	
	13+16.31	Channel was perhaps built too wide and is trying to narrow itself up
Bank Erosion (left bank)	13+05.62	
	13+23.49	Flow directed onto bank from structure upstream. Soil type and lack of vegetation may also be
Aggradation (grass)	13+53.07	
	13+56.82	Channel is narrowing
Aggradation (Cattails)	13+74.82	
	13+80.16	Channel was perhaps built too wide and is trying to narrow itself up
Aggradation (Cattails)	13+95.61	
	14+04.02	Channel was perhaps built too wide and is trying to narrow itself up
Aggradation (grass)	15+24.18	
	16+13.18	Channel was perhaps built too wide and is trying to narrow itself up
Aggradation (Cattails)	15+39.05	
	15+46.91	Channel is narrowing
Aggradation (Cattails)	16+05.77	
	16+18.89	Channel was perhaps built too wide and is trying to narrow itself up
Aggradation (Cattails)	17+87.11	
	17+92.13	Channel was perhaps built too wide and is trying to narrow itself up
Bank Erosion (left bank)	17+94.24	
	18+05.67	Soil type or lack of vegetation. Perhaps built too wide and is narrowing.
Aggradation (grass)	18+22.74	
	18+33.86	Channel is narrowing
Aggradation (grass)	18+76.41	
	18+85.75	Channel is narrowing
Aggradation (grass)	18+97.77	
	19+21.03	Channel is narrowing
Bank Erosion (left bank)	19+14.41	
	19+39.76	Flow directed onto bank. Also soil type or lack of vegetation

		UT to Sou	ıth Fork											
Segment/Reach: 1 (1166 linear feet)														
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05								
A. Riffles		80%												
B. Pools		80%												
C. Thalweg		85%												
D. Meanders		87%												
E. Bed General		92%												
F. Bank Condition		98%												
G. Vanes / J Hooks etc.		58%												
H. Wads and Boulders		50%												

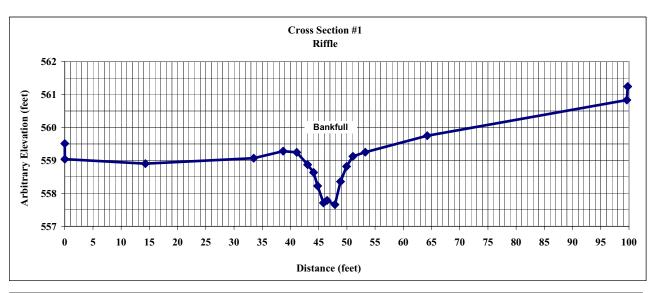
	Table B1. Catego	rical Stream Fea	ature Visual Sta	bility Assessme	nt										
		UT to So	uth Fork												
	Segment/Reach: 2 (1029 linear feet)														
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05									
A. Riffles		91%													
B. Pools		90%													
C. Thalweg		94%													
D. Meanders		79%													
E. Bed General		87%													
F. Bank Condition		98%													
G. Vanes / J Hooks etc.		71%													
H. Wads and Boulders		27%													

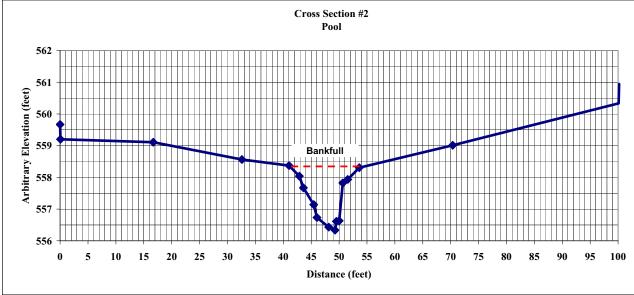
		UT to Sou	ıth Fork											
Segment/Reach: 3 (1020 linear feet)														
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05								
A. Riffles		90%												
B. Pools		91%												
C. Thalweg		88%												
D. Meanders		75%												
E. Bed General		89%												
F. Bank Condition		93%												
G. Vanes / J Hooks etc.		100%												
H. Wads and Boulders		90%												

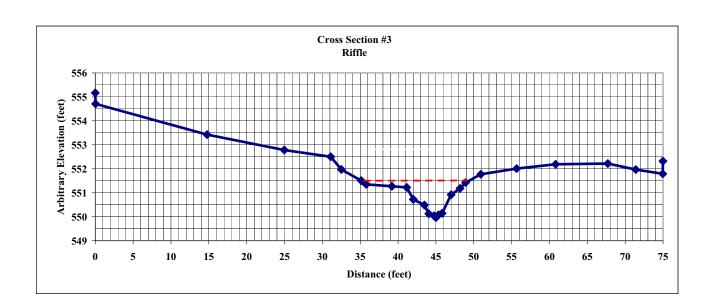
				Tab	ole XII-I	Baseline	Morpho	ology and	l Hydrai	ulic Sum	mary								
						UT to	South F	ork (Sub	reach 1)										
						F	Project N	lumber 4	135										
Parameter	USGS Gage Data		Regional Curve Interval			Pre-Existing Condition			Project Reference Stream			Design				As-built			
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max		Med	Min	Max	Med
Dimension		101uA	ivieu		intun	lilea	IVIIII	mun	lilea		ivitan	inica		101uA		mea		TTUAN	inica
BF Width (ft)	28.00	30.00	29.00				3.00	3.40	3.20	6.50	10.00	8.00	N/A	N/A		9.40			
Floodprone Width (ft)	40.00	100.00	70.00				N/A	N/A	10.00		22.00	18.80		N/A		>33			
BFCross Sectional Area (ft)	58.60	58.90	58.80		Ī.		2.90	3.60	3.20	3.90	6.30	5.30		N/A		5.90			
BF Mean Depth (ft)	2.00	2.10	2.00				1.00	1.10	1.00	0.40	1.00	0.70	N/A	N/A		0.60			
Max Depth (ft)	2.70	3.00	2.90				1.00	1.80	1.40		1.40	1.10			1.30	1.00			
Width/Depth Ratio	13.00						N/A	N/A	3.00		26.00	13.50		N/A		15.00			
Entrenchment Ratio	1.30	3.60	2.40				2.90	3.30	3.10		3.40	2.40		N/A		>2.2			
Bank Height Ratio		N/A	N/A				0.60	3.10	1.80		2.50	1.80		N/A		1.00			
Wetted Perimeter (ft) Hvdraulic radius (ft)	32.00	34.20	33.00				5.00		5.20		12.00	9.40		N/A		10.60			
,	1.83	1.72	1.78				0.58	0.64	0.62	0.53	0.53	0.56	N/A	N/A		0.56			
Pattern Channel Beltwidth (ft)		N T/ A	NT/ A				22.00	122.00	40.00	10.00	25.00	20.00	12.20		41 40	24.50			
Radius of Curvature (ft)		N/A N/A	N/A N/A				22.00	122.00 100.00	48.90 26.10		35.00 31.80	20.90			41.40 37.60	24.50 15.10			
Meander Wavelenght (ft)		N/A	N/A N/A				21.00	282.00	136.70		70.00	50.00			82.80	59.30			
Meander Width Ratio		N/A	N/A				6.90	38.10	15.30		4.40	2.60			4.40	2.60			
Profile	IN/A	IN/A	IN/A				0.90	36.10	15.50	1.50	4.40	2.00	1.30		4.40	2.00			
		NT/ A	NT/ A					NT/ A	NT/ A		N T/ A	NT/ A	NT/ A	N T/ A		NT/ A			
Riffle length (ft)		N/A	N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A		-	
Riffle slope (ft/ft)		N/A	N/A				0.01	0.03	0.02	0.02	0.08	0.04	0.01		0.04	0.02		-	
Pool length (ft)		N/A	N/A				3.80	27.60	11.70		27.00	14.50			32.00	16.90		-	
Pool spacing (ft)	N/A	N/A	N/A				23.20	165.60	75.40	17.00	63.00	36.50	19.80		74.30	43.30			
Substrate																			
d50 (mm)		N/A	N/A				N/A	N/A	13.00		N/A		N/A	N/A		N/A			
d84 (mm)	N/A	N/A	N/A				N/A	N/A	44.00	N/A	N/A	33.00	N/A	N/A		N/A			
Additional Reach Parameters										ļ									
Valley Length (ft)		N/A	N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A			
Channel Length (ft)		N/A	N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A			
	N/A	N/A	N/A				N/A	N/A		N/A	N/A	1.40		N/A		1.26			
Water Surface Slope (ft/ft)		N/A	0.01				N/A	N/A	0.01	N/A	N/A		N/A	N/A		0.01			
BF slope (ft/ft)		N/A	0.01				N/A	N/A	0.01	N/A	N/A	0.02		N/A		0.01			
Rosgen Classification	N/A	N/A	B/C				N/A	N/A	E 4/1	N/A	N/A	C/E 4/1	N/A	N/A		C/E 4/1			
*Habitat Index																			
*Macrobenthos																			

								ork (Subi	Hydrau reach 2)		illai y							
						Pr	oject N	umber 4	35									
Parameter	USGS Gage Data			Regional Curve Interval			Pre-Existing Condition			Project Reference Stream				Design	1	As-built		
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Dimension			1.100			1.100			11100									1.100
BF Width (ft)	28.00	30.00	29.00				N/A	N/A	9.00	6.50	10.00	8.00	N/A	N/A	12.20		T	
Floodprone Width (ft)	40.00	100.00	70.00				N/A	N/A	68.00	16.00	22.00	18.80	N/A	N/A	>26.8		1	
BFCross Sectional Area (ft)	58.60	58.90	58.80				N/A	N/A	10.20	3.90	6.30	5.30	N/A	N/A	10.00			
BF Mean Depth (ft)	2.00	2.10	2.00				N/A	N/A	1.10	0.40	1.00	0.70	N/A	N/A	0.80			
Max Depth (ft)	2.70	3.00	2.90				1.00	2.10	1.50	0.90	1.40	1.10	1.00	1.60	1.30			
Width/Depth Ratio	13.00	15.00	14.00				N/A	N/A	8.00	7.00	26.00	13.50	N/A	N/A	15.00			
Entrenchment Ratio	1.30		2.40				N/A	N/A	7.60	2.00				N/A	>2.2			
Bank Height Ratio			N/A				N/A	N/A	1.70	1.40				N/A	1.00			
Wetted Perimeter (ft)	32.00	34.20	33.00				N/A	N/A	11.20	7.30				N/A	13.80			
Hydraulic radious (ft)	1.83	1.72	1.78				N/A	N/A	0.91	0.53	0.53	0.56	N/A	N/A	0.72			
Pattern																		
Channel Beltwidth (ft)			N/A				12.00	114.00	45.70	10.00	35.00		15.90	53.90	31.80			
Radius of Curvature (ft)			N/A		-		5.00	140.00	28.00	2.30	31.80		3.70	49.00	19.60			
Meander Wavelenght (ft)			N/A			_	40.00	172.00	87.90	35.00	70.00		53.90	107.80	77.20			
Meander Width Ratio	N/A	N/A	N/A				1.30	12.70	5.10	1.30	4.40	2.60	1.30	4.40	2.60			
Profile																		
Riffle length (ft)	N/A	N/A	N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Riffle slope (ft/ft)	N/A	N/A	N/A				0.00	0.08	0.03	0.02	0.08	0.04	0.01	0.05	0.03			
Pool length (ft)	N/A	N/A	N/A				3.80	27.60	12.40	7.00	27.00	14.50	11.00	41.60	22.00			
Pool spacing (ft)	N/A	N/A	N/A				12.90	75.90	35.40	17.00	63.00	36.50	25.70	96.80	56.30			
Substrate																		
d50 (mm)	N/A	N/A	N/A				N/A	N/A	13.00	N/A	N/A	4.50	N/A	N/A	N/A			
d84 (mm)		N/A	N/A				N/A	N/A	44.00	N/A	N/A	53.00	N/A	N/A	N/A			
Additional Reach Parameters								1							1			
Valley Length (ft)	N/A	N/A	N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Channel Length (ft)			N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Sinuosity			N/A					N/A	1.27		N/A	1.40		N/A	1.58			
Water Surface Slope (ft/ft)		N/A	0.00				N/A	N/A	0.02		N/A	0.02		N/A	0.01			
BF slope (ft/ft)		N/A	0.00				N/A	N/A	0.02		N/A	0.02		N/A	0.01			
Rosgen Classification			0.00 B/C				N/A				N/A N/A		N/A N/A	N/A N/A	0.01 C/E 4/1			
*Habitat Index	1 1/23	14/2	D /C				IVA	11/2	1/1	11/2		C/12 4/1		1 1/2	C/L 4/1			
"nabitat Index					-											ļ		

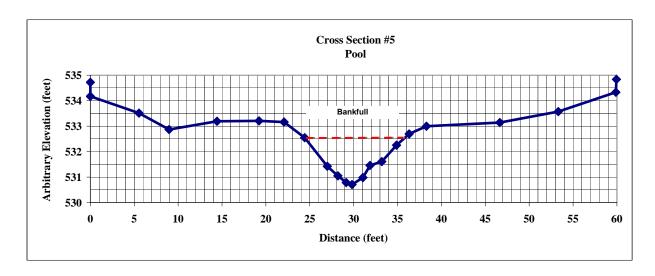
					Table X	XII Bas	eline Mo	orphology an	d Hydraul	ic Summ	ary						
						U		ith Fork (Su									
	-						Proj	ect Number	435								
Parameter	US	SGS Gag	e Data	Reį	gional C Interval		Pre	-Existing Co	ndition	Project	Referer	nce Stream		De	sign		
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	-	Med	
Dimension												11100				1.100	
BF Width (ft)	28.00	30.00	29.00				N/A	N/A	12.00	6.50	10.00	8.00	N/A	N/A		1	14.00
Floodprone Width (ft)	40.00	100.00	70.00				N/A	N/A	25.00	16.00	22.00	18.80	N/A	N/A		>30.8	
BFCross Sectional Area (ft)	58.60	58.90	58.80				N/A	N/A	12.10	3.90	6.30	5.30	N/A	N/A		1	15.00
BF Mean Depth (ft)	2.00	2.10	2.00				N/A	N/A	1.00	0.40	1.00	0.70	N/A	N/A			1.10
Max Depth (ft)			2.90				1.20					1.10			2.20		1.80
Width/Depth Ratio	13.00		14.00				N/A	N/A	12.00			13.50		N/A			13.00
Entrenchment Ratio	1.30		2.40				N/A	N/A	2.10				N/A	N/A		>2.2	
Bank Height Ratio		N/A	N/A				N/A	N/A	2.40				N/A	N/A			1.00
Wetted Perimeter (ft)							N/A	N/A	14.00				N/A	N/A		1	16.20
Hydraulic radious (ft)	1.83	1.72	1.78				N/A	N/A	0.86	0.53	0.53	0.56	N/A	N/A			0.93
Pattern																	
Channel Beltwidth (ft)		N/A	N/A				19.00					20.90			56.00		22.00
Radius of Curvature (ft)		N/A	N/A			-	11.00					13.50			56.00		22.00
Meander Wavelenght (ft)		N/A	N/A			-	60.00					50.00			23.00	2	88.00
Meander Width Ratio	N/A	N/A	N/A				1.60	6.40	3.30	1.30	4.40	2.60	1.30		4.40		2.60
Profile																	
Riffle length (ft)		N/A	N/A				N/A	N/A	N/A	N/A		N/A	N/A	N/A		N/A	
Riffle slope (ft/ft)		N/A	N/A				0.00	0.05	0.02	0.02	0.08	0.04	0.00		0.02		0.01
Pool length (ft)	N/A	N/A	N/A				9.40	59.20	35.30	7.00	27.00	14.50	13.00		48.00	1	25.00
Pool spacing (ft)	N/A	N/A	N/A				37.80	103.90	73.20	17.00	63.00	36.50	29.00	1	11.00	(64.00
Substrate																	
d50 (mm)	N/A	N/A	N/A				N/A	N/A	13.00	N/A	N/A	4.50	N/A	N/A		N/A	
d84 (mm)	N/A	N/A	N/A				N/A	N/A	45.00	N/A	N/A	53.00	N/A	N/A		N/A	
Additional Reach Parameters	1																
Valley Length (ft)	N/A	N/A	N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A	
Channel Length (ft)		N/A	N/A				N/A	N/A	N/A	N/A		N/A	N/A	N/A		N/A	
Sinuosity			N/A				1	N/A			N/A			N/A			1.16
Water Surface Slope (ft/ft)		N/A	0.00				N/A	N/A		N/A	N/A		N/A	N/A			0.01
BF slope (ft/ft)		N/A	0.00				N/A	N/A	-	N/A	N/A		N/A	N/A			0.01
Rosgen Classification			B/C				N/A	N/A	E 4/1	N/A	N/A		N/A	N/A		C/E 4/	
*Habitat Index		- ***					- "	- "	- "-		- ***		I	I- "**		, 1	-
*Macrobenthos																	
waerobellulos																	

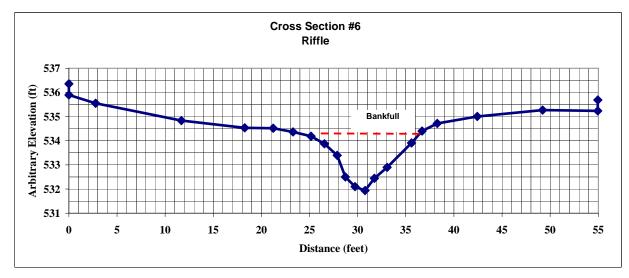

As-built Min Max Med Image: Second			
Min Max Med Image: Section of the		As-built	
	Min	Max	Med
	IVIIII	IVIAX	wieu
Image: Section of the sectio			
Image: Section of the sectio			
Image: Section of the sectio			
Image: Constraint of the sector of			
Image: Section of the sectio			
	-		

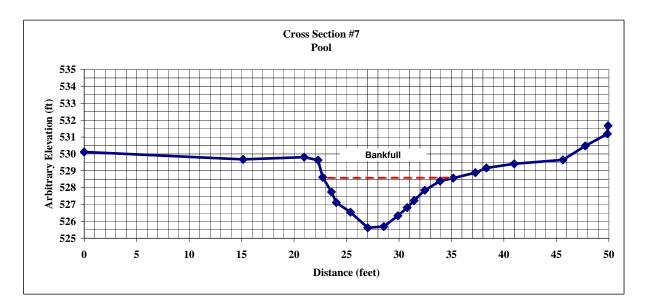

						Tab	ole XIII.	Morp	hology :	and Hyd	raulic N	Aonitor	ing Sun	ımary									
									UT to	South Fo	ork Cre	ek											
								Segn	nent/Rea	ach: 1 (1	166 line	ar feet))										
Parameter		Cro	oss Sect	ion 1 Ri	ffle			С	ross Sec	tion 2 Po	ool			Cro	oss Sect	ion 3 Ri	ffle			Cı	oss Sect	ion 4 Po	ol
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5 MY+
BF Width (ft)	12.1						12.6						13.8						11.8				
Floodporne Width (ft)	99						NA						>40						NA				
BFCross Sectional Area (ft)	8.2						12.3						8.1						13.7				
BF Mean Depth (ft)	0.7						1						0.6						1.2				
Width/Depth Ratio	17.9						NA						23.6						NA				
Entrenchment Ratio	8.5						NA		¥/////////////////////////////////////				>3.0						NA				
Wetted Perimeter (ft)	50.5						13.6						14.9						12.3				
Hydraulic radious (ft)	0.4						0.9						0.5						1.1				
Substrate																							
d50 (mm)	sand						sand						sand						sand				
d84 (mm)	sand						sand						sand						sand				
																			-				
Parameter	MY	7-01 (20	06)	MY	Y-02 (20	07)	MY	2-03 (20)08)	МҮ	-04 (20	09)	MY	2-05 (20	10)	М	Y+ (20	11)					
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med					
Channel Beltwidth (ft)	8.9	51.8	20.7																				
Radius of Curvature (ft)	9.1	39.1	14.4																				
Meander Wavelenght (ft)	46.4	95.8	62.9																				
Meander Width Ratio	3.6	7.4	4.9																				
Profile																							
Riffle length (ft)	2.56	61.09	14.2																				
Riffle slope (ft/ft)	0	0.08	0.02																				
Pool length (ft)	4.43	71.01	19.32																				
Pool spacing (ft)	8.5	126.5	40.4						<u>X////////////////////////////////////</u>														
Additional Reach Parameters																							
Valley Length (ft)		925.9																					
Channel Length (ft)		1166																					
Sinuosity		0.8																					
Water Surface Slope (ft/ft)		0.0098																	1				
BF slope (ft/ft)		0.0094																					
Rosgen Classification		С																					
*Habitat Index		NA																	1				
*Macrobenthos		NA																					

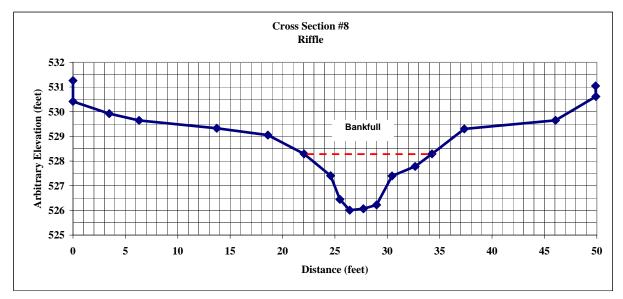

						UT t	o Sout	n Fork										
			Tal	ole XIII.	. Morp	hology	and Hy	draulic	Monito	oring Su	mmary							
					-		South F				•							
					Segn	1ent/Re	ach: 2 (1029 lin	ear feet	t)			-					
Parameter		Cr	oss Sect	ion 1 Pc	ol			Cro	oss Sect	ion 2 Ri	ffle							
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+						
BF Width (ft)	10.5						10.4											
Floodporne Width (ft)	NA						>50											
BFCross Sectional Area (ft)	11.4						12.1											
BF Mean Depth (ft)	1.1						1.2											
Width/Depth Ratio	NA						9											
Entrenchment Ratio	NA						>4.8											
Wetted Perimeter (ft)	39						12.3											
Hydraulic radious (ft)	0.6						1											
Substrate																		
d50 (mm)	sand						sand											
d84 (mm)	sand						sand											
Parameter	MY	-01 (20	06)	MY	-02 (20	07)	МУ	7-03 (20	08)	MY	Y-04 (20	09)	МУ	2-05 (20	10)	М	Y+ (201	11)
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	14.3	64.2	27.5															
Radius of Curvature (ft)	7.9	45.5	24.8															
Meander Wavelenght (ft)	56.6	116.7	73.4															
Meander Width Ratio	5.4	11.2	7.1															
Profile																		
Riffle length (ft)	1.25	30.1	9.8															
Riffle slope (ft/ft)	0	0.38	0.08															
Pool length (ft)	7	53	25															
Pool spacing (ft)	22	188	73															
Additional Reach Parameters																		
Valley Length (ft)		906.9																
Channel Length (ft)		1029																
Sinuosity		0.9																
Water Surface Slope (ft/ft)		0.0081																
BF slope (ft/ft)		0.0073																
Rosgen Classification		С																
*Habitat Index		NA															<u>/////////////////////////////////////</u>	
*Macrobenthos		NA															///////////////////////////////////////	

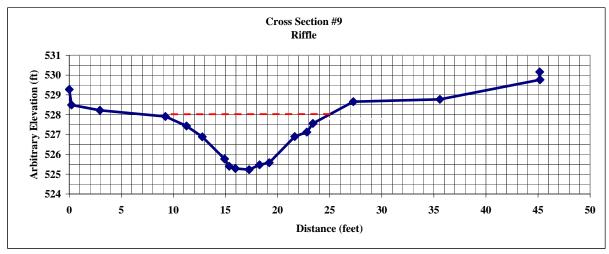

											Tal	ole XIII	-	UT to S	outh Fo	lraulic M ork Cree 1020 line	k	ing Sum	mary							-				
Parameter		С	ross Sec	tion 1 Po	ool			Cro	oss Secti	ion 2 Ri	iffle			Cr	oss Sect	tion 3 Ri	ffle			Cross Section 4 Po	ol		Cro	oss Section 5 I	Pool		Cross	Section	6 Riffle	e
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2 MY3 MY4	MY5 MY	+ MY1	MY2	MY3 MY4	MY5 MY-	MY1	MY2 N	1Y3 M	Y4 MY	Y5 MY-
BF Width (ft)	12.4						12.2						15.3						15			11.2				15.9				
Floodporne Width (ft)	NA						>50						>45						NA			NA				>45				
BFCross Sectional Area (ft)	20.4						14						21.4						26.6			21				21.6				
BF Mean Depth (ft)	1.6						1.2						1.4						1.8			1.9				1.4				
Width/Depth Ratio	NA		V		Ŵ	XIIII	10.6				X	V	11						NA		¥///¥//	NA				11.7				
Entrenchment Ratio	NA		VIIII		X/////	VIIII	>3.2				X	VIIII	>3.2					VIIIII	NA	<u>VIII VIII VIII I</u>	VIII	NA				>3.2				
Wetted Perimeter (ft)	14.4		VIIII		V	VIIII	13.4				X	V	16.5			V		VIIII	16.3		¥///¥//	14.2			VIII	17.6			//¥///	
Hydraulic radious (ft)	1.4		VIIII		Ŵ	X/////	1				X	V	1.3						1.4	VIII VIII VIIII	VIII VIII	1.6			VIIV	1.3				
Substrate			V		V						V											1								
d50 (mm)	sand				V		sand						sand						sand			sand				sand				
d84 (mm)	sand						sand						sand						sand			sand				sand				
Parameter	M	7-01 (20)06)	M	Y-02 (20	007)	MY	7-03 (20	08)	М	Y-04 (20)09)	M	Y-05 (20	10)	М	Y+ (201	1)												
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med												
Channel Beltwidth (ft)	13.8	68.7	37.1																											
Radius of Curvature (ft)	16.8	107.9	30.9																											
Meander Wavelenght (ft)	79.3	151.6	125.3																											
Meander Width Ratio	5.2	10	8.3																											
Profile																														
Riffle length (ft)	2.13	40.9	16.4																											
Riffle slope (ft/ft)	0	0.14	0.02									X/////////////////////////////////////		X/////////////////////////////////////																
Pool length (ft)	7	84	34																											
Pool spacing (ft)	21	101	51																											
Additional Reach Parameters																														
Valley Length (ft)		862.4																												
Channel Length (ft)		1020																												
Sinuosity		0.8																												
Water Surface Slope (ft/ft)		0.0046																												
BF slope (ft/ft)		0.0036																												
Rosgen Classification		C																												
*Habitat Index		NA																												
*Macrobenthos		NA					X/////////////////////////////////////									*//////// ////////////////////////////														

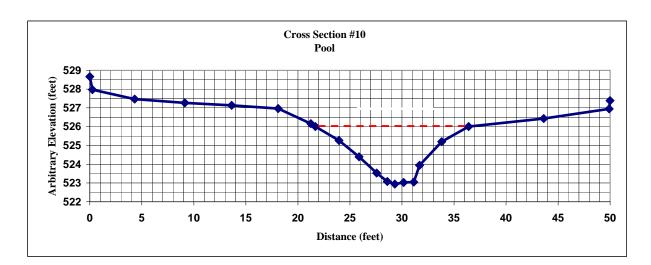

STREAM CROSS-SECTIONS

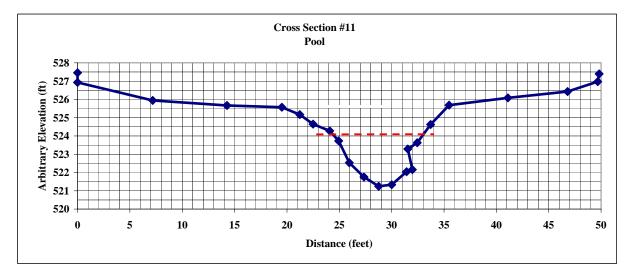


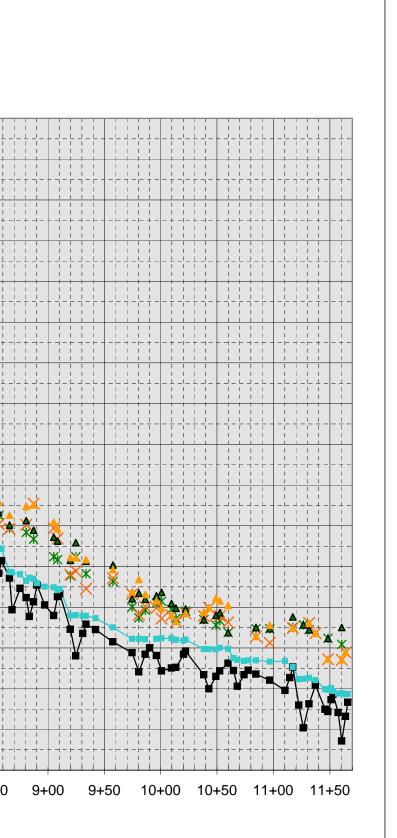


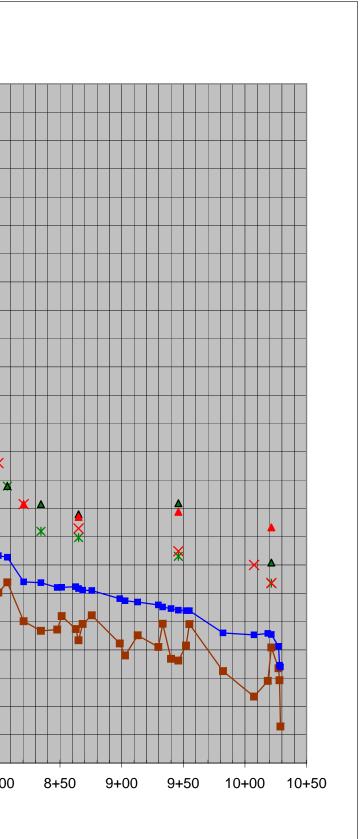




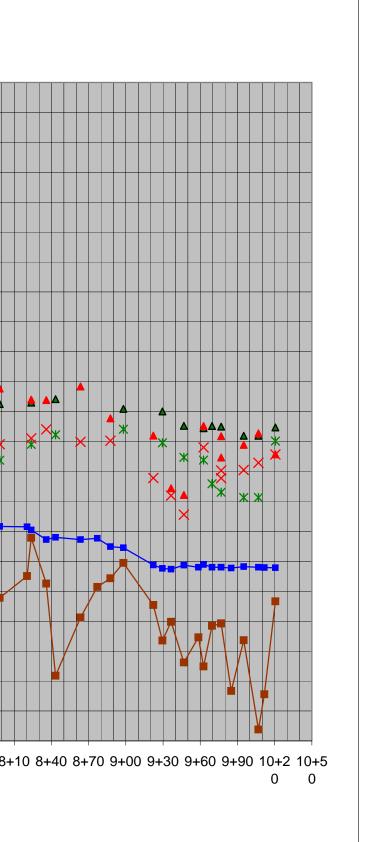








STREAM LONGITUDINAL PROFILE


UT to South Fork Reach 1 561.00 560.00 559.00 558.00 557.00 556.00 ┢▲ 555.00 Elevation (feet) 554.00 553.00 552.00 551.00 550.00 549.00 . . . 548.00 - I - I i i i 547.00 546.00 545.00 5+00 5+50 6+00 Station (feet) 0+00 2+00 2+50 6+50 7+00 0+50 1+50 3+00 3+50 7+50 8+00 8+50 1+00 4+00 4+50 -■-TW -■-WS X LBKF × RBKF ▲ LTOB ▲ RTOB

UT to South Fork Reach 2 Longitudinal 540.00 539.00 538.00 537.00 X 536.00 Arbitrary Elevation (feet) 535.00 Δ 534.00 🔺 💥 533.00 532.00 531.00 530.00 529.00 528.00 ⁴⁺⁵⁰ 5+00 5+50 Station (feet) 0+00 0+50 1+00 1+50 2+00 2+50 3+00 6+50 7+00 7+50 8+00 3+50 4+00 6+00

UT to South Fork Reach 3 531.0 530.0 529.0 528.0 Arbitrary Elevation (feet)25202522.02527.02527.02527.0 Ж × x × * ** * * 523.0 522.0 521.0 520.0 0+00 0+30 0+60 0+90 1+20 1+50 1+80 2+10 2+40 2+70 3+00 3+30 3+60 3+90 4+20 4+50 4+80 5+10 5+40 5+70 6+00 6+30 6+60 6+90 7+20 7+50 7+80 8+10 8+40 8+70 9+00 9+30 9+60 9+90 10+2 10+5 Station (feet)

STREAM PEBBLE COUNTS

PEBBLE				00	1	1	
Site:	UT to South I	Fork		SS	E		I
Party:	ATW and WE	ργ		U ENGI	NEERIN	IG GRO	UP
Date:	Apr-06			PART		DUNT	
Inches	Particle	Millimeters		Reach: SR1 CS1	TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	28	28	28%	28%
	Very Fine	.062125		32	32	32%	60%
	Fine	.12525	s	18	18	18%	78%
	Medium	.2550		9	9	9%	87%
	Coarse	.50-1.0		13	13	13%	100%
.0408	Very Coarse	1.0-2		0	0	0%	0%
.0816	Very Fine	2.0-4.0	\frown	0	0	0%	0%
.1622	Fine	4-5.7	G \	0	0	0%	0%
.2231	Fine	5.7-8		0	0	0%	0%
.3144	Medium	8-11.3		0	0	0%	0%
.4463	Medium	11.3-16		0	0	0%	0%
.6389	Coarse	16-22.6	— È /	0	0	0%	0%
.89-1.26	Coarse	22.6-32		0	0	0%	0%
1.26-1.77	Very Coarse			0	0	0%	0%
1.77-2.5	Very Coarse	45-64		0	0	0%	0%
2.5-3.5	Small	64-90		0	0	0%	0%
3.5-5.0	Small	90-128		0	0	0%	0%
5.0-7.1	Large	128-180	\Box \Box \Box	0	0	0%	0%
7.1-10.1	Large	180-256		0	0	0%	0%
10.1-14.3	Small	256-362		0	0	0%	0%
14.3-20	Small	362-512		0	0	0%	0%
20-40	Medium	512-1024	BOULDER	0	0	0%	0%
40-80	Large	1024-2048		0	0	0%	0%
	Bedrock		BDRK	0	0	0%	0%
					100	100%	

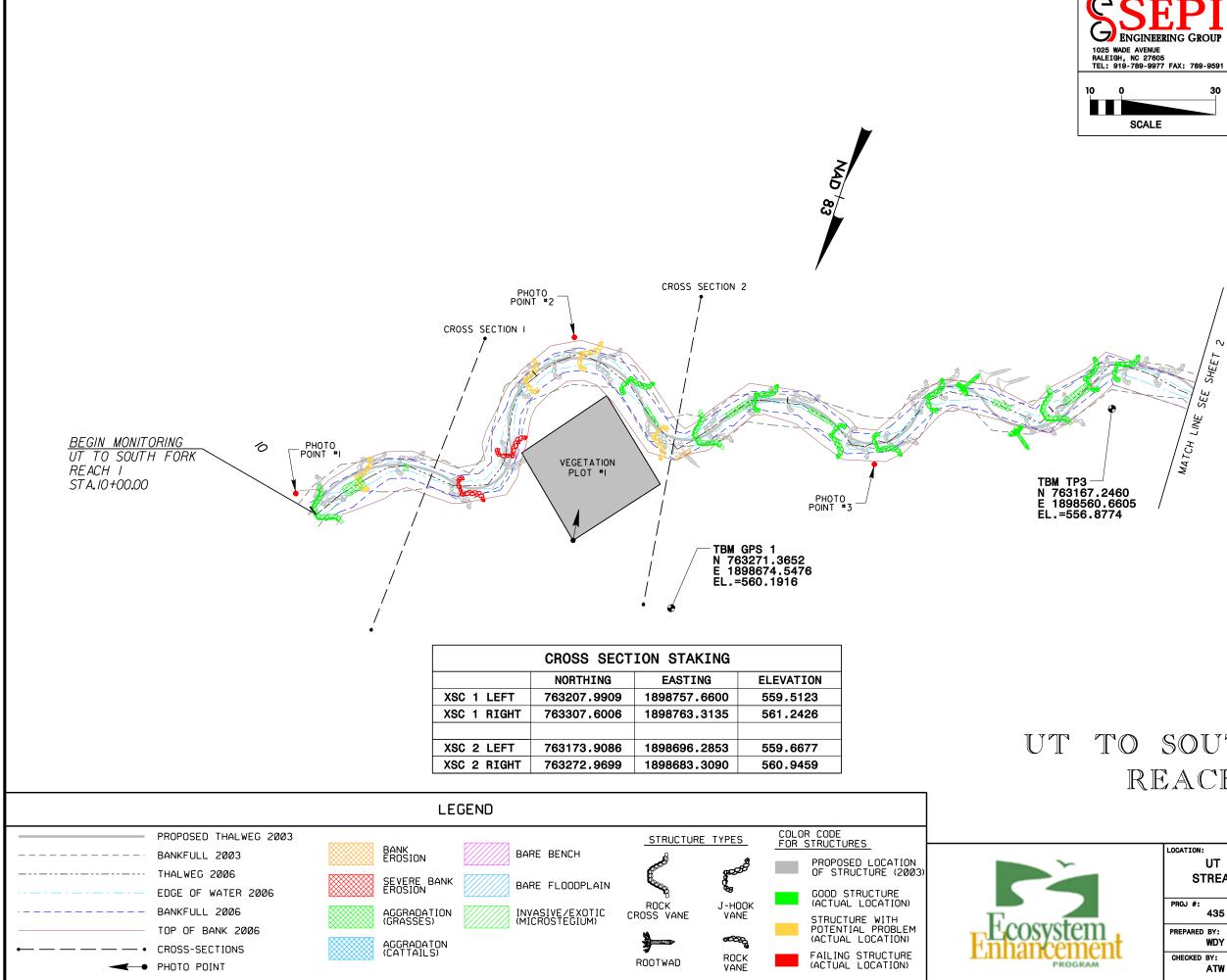
PEBBLE	COUNT			00			-
Site:	UT to South I	Fork		SS	E		
Party:	ATW and WE	DY		U ENGL	NEERIN	G GRO	JP
Date:	Apr-06			PARTICLE COUN	IT		
Inches	Particle	Millimeters		Reach: SR1 CS2	TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	18	18	18%	18%
	Very Fine	.062125	\square	15	15	15%	33%
	Fine	.12525	s	22	22	22%	55%
	Medium	.2550		25	25	25%	80%
	Coarse	.50-1.0		20	20	20%	100%
.0408	Very Coarse	1.0-2		0	0	0%	0%
.0816	Very Fine	2.0-4.0	\frown	0	0	0%	0%
.1622	Fine	4-5.7		0	0	0%	0%
.2231	Fine	5.7-8	G R	0	0	0%	0%
.3144	Medium	8-11.3		0	0	0%	0%
.4463	Medium	11.3-16		0	0	0%	0%
.6389	Coarse	16-22.6	È –	0	0	0%	0%
.89-1.26	Coarse	22.6-32		0	0	0%	0%
1.26-1.77	Very Coarse	32-45		0	0	0%	
1.77-2.5	Very Coarse	45-64		0	0	0%	0%
2.5-3.5	Small	64-90		0	0	0%	0%
3.5-5.0	Small	90-128		0	0	0%	0%
5.0-7.1	Large	128-180	\square	0	0	0%	0%
7.1-10.1	Large	180-256		0	0	0%	0%
10.1-14.3	Small	256-362		0	0	0%	0%
14.3-20	Small	362-512		0	0	0%	0%
20-40	Medium	512-1024	BOULDER	0	0	0%	0%
40-80	Large	1024-2048		0	0	0%	0%
	Bedrock		BDRK	0	0	0%	0%
					100	100%	

PEBBLE	COUNT						
te: l	UT to South F	Fork		SS			
arty: /	ATW and WD	γ		ENGI	NEERIN	IG GRO	UP
ate:	Apr-06			PARTICLE COUN	IT		
Inches	Particle	Millimeters		Reach: 1 CS 3	TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	34	34	34%	34%
	Very Fine	.062125		20	20	20%	53%
	Fine	.12525	s	14	14	14%	67%
	Medium	.2550		18	18	18%	85%
	Coarse	.50-1.0		15	15	15%	100%
.0408	Very Coarse	1.0-2		0	0	0%	0%
.0816	Very Fine	2.0-4.0	\frown	0	0	0%	0%
.1622	Fine	4-5.7		0	0	0%	0%
.2231	Fine	5.7-8	G R	0	0	0%	0%
.3144	Medium	8-11.3		0	0	0%	0%
.4463	Medium	11.3-16		0	0	0%	0%
.6389	Coarse	16-22.6	È –	0	0	0%	0%
.89-1.26	Coarse	22.6-32		0	0	0%	0%
	Very Coarse	32-45		0	0	0%	0%
1.77-2.5	Very Coarse	45-64		0	0	0%	0%
2.5-3.5	Small	64-90		0	0	0%	0%
3.5-5.0	Small	90-128		0	0	0%	0%
5.0-7.1	Large	128-180		0	0	0%	0%
7.1-10.1	Large	180-256		0	0	0%	0%
10.1-14.3	Small	256-362		0	0		0%
14.3-20	Small	362-512		0	0	0%	0%
20-40	Medium	512-1024	BOULDER	0	0	0%	0%
40-80	Large	1024-2048		0	0	0%	0%
	Bedrock		BDRK	0	0	0%	0%
					101	100%	
					101	1007	

PEBBL	E COUNT						
Site:	UT to South I	Fork		SS	F	P	T
						G GRO	
Party:	ATW and WE	ŊΥ		ENGI	NEEKIIN	G GRO	UP
Date:	Apr-06			PARTICLE COUN	т		
				Reach: SR1			
Inches	Particle	Millimeters		Cross-Section 4	TOT#	ITEM %	
	Silt/Clay	< 0.062	S/C	53	53	53%	53%
	Very Fine	.062125		32	32	32%	85%
	Fine	.12525	S A	8	8	8%	93%
	Medium	.2550		7	7	7%	100%
	Coarse	.50-1.0		0	0	0%	100%
.0408	Very Coarse	1.0-2		0	0	0%	0%
.0816	Very Fine	2.0-4.0		0	0	0%	0%
.1622	Fine	4-5.7	G \	0	0	0%	0%
.2231	Fine	5.7-8		0	0	0%	0%
.3144	Medium	8-11.3		0	0	0%	0%
.4463	Medium	11.3-16		0	0	0%	0%
.6389	Coarse	16-22.6	— È /	0	0	0%	0%
.89-1.26	Coarse	22.6-32		0	0	0%	0%
1.26-1.77	Very Coarse	32-45		0	0	0%	0%
1.77-2.5	Very Coarse	45-64		0	0	0%	0%
2.5-3.5	Small	64-90		0	0	0%	0%
3.5-5.0	Small	90-128		0	0	0%	0%
5.0-7.1	Large	128-180		0	0	0%	0%
7.1-10.1	Large	180-256		0	0	0%	0%
10.1-14.3	Small	256-362		0	0	0%	0%
14.3-20	Small	362-512		0	0	0%	0%
20-40	Medium	512-1024	BOULDER	0	0	0%	0%
40-80	Large	1024-2048		0	0	0%	0%
	Bedrock		BDRK	0	0	0%	0%
					100	100%	

PEBBL	E COUNT				14 N. 14		
Site:	UT to South I	Fork		SS	E	P	Ι
Party:	ATW and WE)Υ				G GRO	
i ui ty:							
Date:	Apr-06			PARTICLE COUN	Т		
	•			Subreach 2			
Inches	Particle	Millimeters		Cross-Section 5	TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	43	43	43%	43%
	Very Fine	.062125		46	46	46%	89%
	Fine	.12525	s	7	7	7%	96%
	Medium	.2550		4	4	4%	100%
	Coarse	.50-1.0		0	0	0%	
.0408	Very Coarse	1.0-2		0	0	0%	0%
.0816	Very Fine	2.0-4.0	\frown	0	0	0%	0%
.1622	Fine	4-5.7	G \	0	0	0%	0%
.2231	Fine	5.7-8		0	0	0%	0%
.3144	Medium	8-11.3		0	0	0%	0%
.4463	Medium	11.3-16		0	0	0%	0%
.6389	Coarse	16-22.6	— È /	0	0	0%	0%
.89-1.26	Coarse	22.6-32		0	0	0%	0%
1.26-1.77	Very Coarse	32-45		0	0	0%	0%
1.77-2.5	Very Coarse	45-64		0	0	0%	0%
2.5-3.5	Small	64-90		0	0	0%	0%
3.5-5.0	Small	90-128		0	0	0%	0%
5.0-7.1	Large	128-180	\Box	0	0	0%	0%
7.1-10.1	Large	180-256		0	0	0%	0%
10.1-14.3	Small	256-362		0	0	0%	0%
14.3-20	Small	362-512	(BOULDER)	0	0	0%	0%
20-40	Medium	512-1024	L BUULDER Z	0	0	0%	0%
40-80	Large	1024-2048		0	0	0%	0%
	Bedrock		BDRK	0	0	0%	0%
					100	100%	

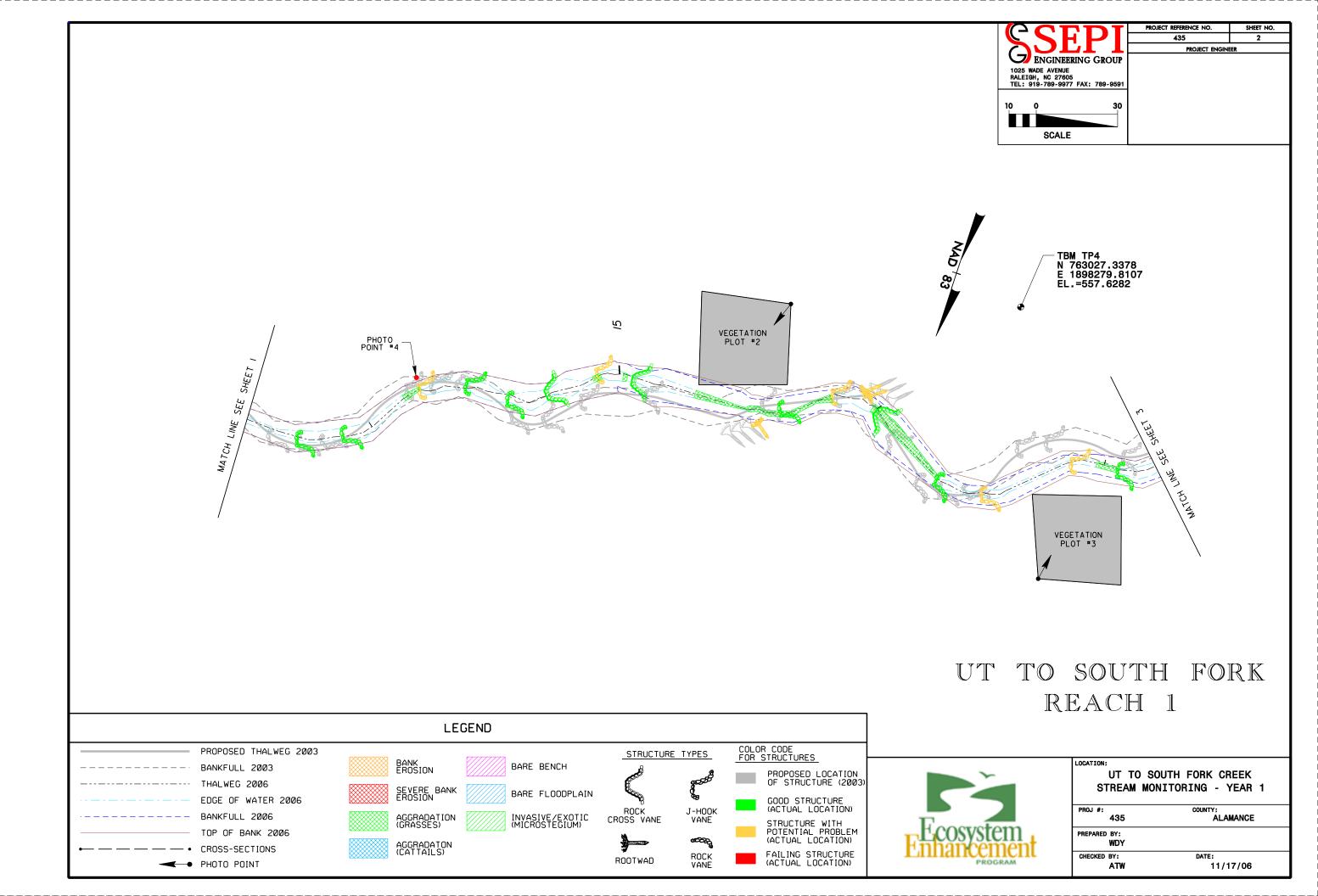
PEBBL	E COUNT					-	-
Site:	UT to South I	Fork		\subseteq S	H	P	
						_	and the second s
Party:	ATW and WE	ΟY		ENGI	NEERIN	IG GRO	UP
•							
Date:	Apr-06			PARTICLE COUN	Т		
				Subreach 2			
Inches	Particle	Millimeters		Cross-Section 6	TOT#	ITEM %	
	Silt/Clay	< 0.062	S/C	24	24	24%	24%
	Very Fine	.062125		12	12	12%	36%
	Fine	.12525	S A	5	5	5%	41%
	Medium	.2550		8	8	8%	49%
	Coarse	.50-1.0		31	31	31%	81%
.0408	Very Coarse	1.0-2		0	0	0%	81%
.0816	Very Fine	2.0-4.0		9	9	9%	90%
.1622	Fine	4-5.7	G \	5	5	5%	95%
.2231	Fine	5.7-8		1	1	1%	96%
.3144	Medium	8-11.3		1	1	1%	97%
.4463	Medium	11.3-16		3	3	3%	100%
.6389	Coarse	16-22.6	— È /	0	0	0%	100%
.89-1.26	Coarse	22.6-32		0	0	0%	100%
1.26-1.77	Very Coarse	32-45		0	0	0%	100%
1.77-2.5	Very Coarse	45-64		0	0	0%	100%
2.5-3.5	Small	64-90		0	0	0%	100%
3.5-5.0	Small	90-128		0	0	0%	100%
5.0-7.1	Large	128-180		0	0	0%	100%
7.1-10.1	Large	180-256		0	0	0%	100%
10.1-14.3	Small	256-362		0	0	0%	100%
14.3-20	Small	362-512		0	0	0%	100%
20-40	Medium	512-1024	BOULDER	0	0	0%	100%
40-80	Large	1024-2048		0	0	0%	100%
	Bedrock		BDRK	0	0	0%	100%
					99	100%	

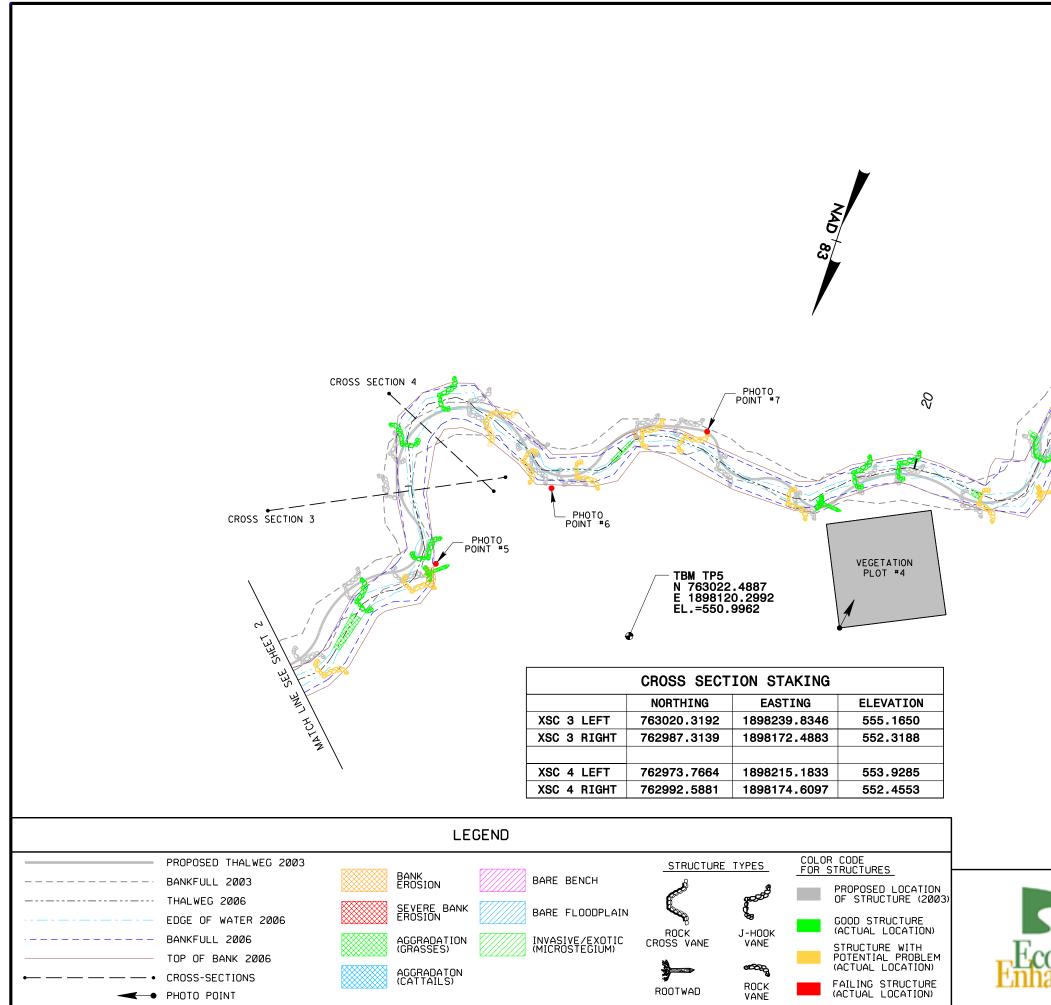

PEBBLE	COUNT				stat his	a inte	
Site:	UT to South I	Fork		SS	E	\mathbf{P}	Ι
Party:	ATW and WD	DΥ		C ENGI	NEERIN	G GRO	UP
Date:	Apr-06			PA	RTICLE	COUNT	
Inches	Particle	Millimeters		Reach: SR3 Cross-Section 7	TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	18	18	0.1782	0.1782
	Very Fine	.062125	$\square \bigcirc$	16	16	0.1584	0.3366
	Fine	.12525	s	14	14	0.1386	0.4752
	Medium	.2550		9	9	0.0891	0.5644
	Coarse	.50-1.0		16	16	0.1584	0.7228
.0408	Very Coarse	1.0-2		8	8	0.0792	0
.0816	Very Fine	2.0-4.0	\frown	2	2	0.0198	0.0198
.1622	Fine	4-5.7		1	1	0.0099	0.0297
.2231	Fine	5.7-8	G R	5	5	0.0495	0.0792
.3144	Medium	8-11.3		0	0		0.0792
.4463	Medium	11.3-16		3	3		0.1089
.6389	Coarse	16-22.6	È –	0	0		0.1089
.89-1.26	Coarse	22.6-32		5	5	0.0495	0.1584
1.26-1.77	Very Coarse			0	0		
1.77-2.5	Very Coarse	45-64		1	1	0.0099	0.1683
2.5-3.5	Small	64-90		2	2	0.0198	0.1881
3.5-5.0	Small	90-128		0	0	0	0.1881
5.0-7.1	Large	128-180	\Box	1	1	0.0099	0.198
7.1-10.1	Large	180-256		0	0	0	0.198
10.1-14.3	Small	256-362		0	0	0	0.198
14.3-20	Small	362-512		0	0		0.198
20-40	Medium	512-1024	BOULDER	0	0	0	0.198
40-80	Large	1024-2048		0	0	0	0.198
	Bedrock		BDRK		0	0	0.198
					101	1	

PEBBL	E COUNT						
Site:	UT to South I	Fork		SS	T	D	Т
				20			
Party:	ATW and WE)Y				IG GRO	
Date:	Apr-06			PA	RTICLE	COUNT	
				Subreach 2			
Inches	Particle	Millimeters		Cross-Section 8		ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	15	15	0.15	0.15
	Very Fine	.062125		17	17	0.17	0.32
	Fine	.12525	S A	12	12	0.12	0.44
	Medium	.2550		9	9	0.09	0.53
	Coarse	.50-1.0		14	14	0.14	0.67
.0408	Very Coarse	1.0-2		8	8	0.08	0
.0816	Very Fine	2.0-4.0		2	2	0.02	0.02
.1622	Fine	4-5.7	G \	3	3	0.03	0.05
.2231	Fine	5.7-8		5	5	0.05	0.1
.3144	Medium	8-11.3		2	2	0.02	0.12
.4463	Medium	11.3-16		3	3	0.03	0.15
.6389	Coarse	16-22.6	È –	1	1	0.01	0.16
.89-1.26	Coarse	22.6-32		5	5	0.05	0.21
1.26-1.77	Very Coarse	32-45		0	0	0	0.21
1.77-2.5	Very Coarse	45-64		1	1	0.01	0.22
2.5-3.5	Small	64-90		2	2	0.02	0.24
3.5-5.0	Small	90-128		0	0	0	0.24
5.0-7.1	Large	128-180	\Box	1	1	0.01	0.25
7.1-10.1	Large	180-256		0	0	0	0.25
10.1-14.3	Small	256-362		0	0	0	0.25
14.3-20	Small	362-512		0	0	0	0.25
20-40	Medium	512-1024	BOULDER	0	0	0	0.25
40-80	Large	1024-2048		0	0	0	0.25
	Bedrock		BDRK		0	0	0.25
					100	1	

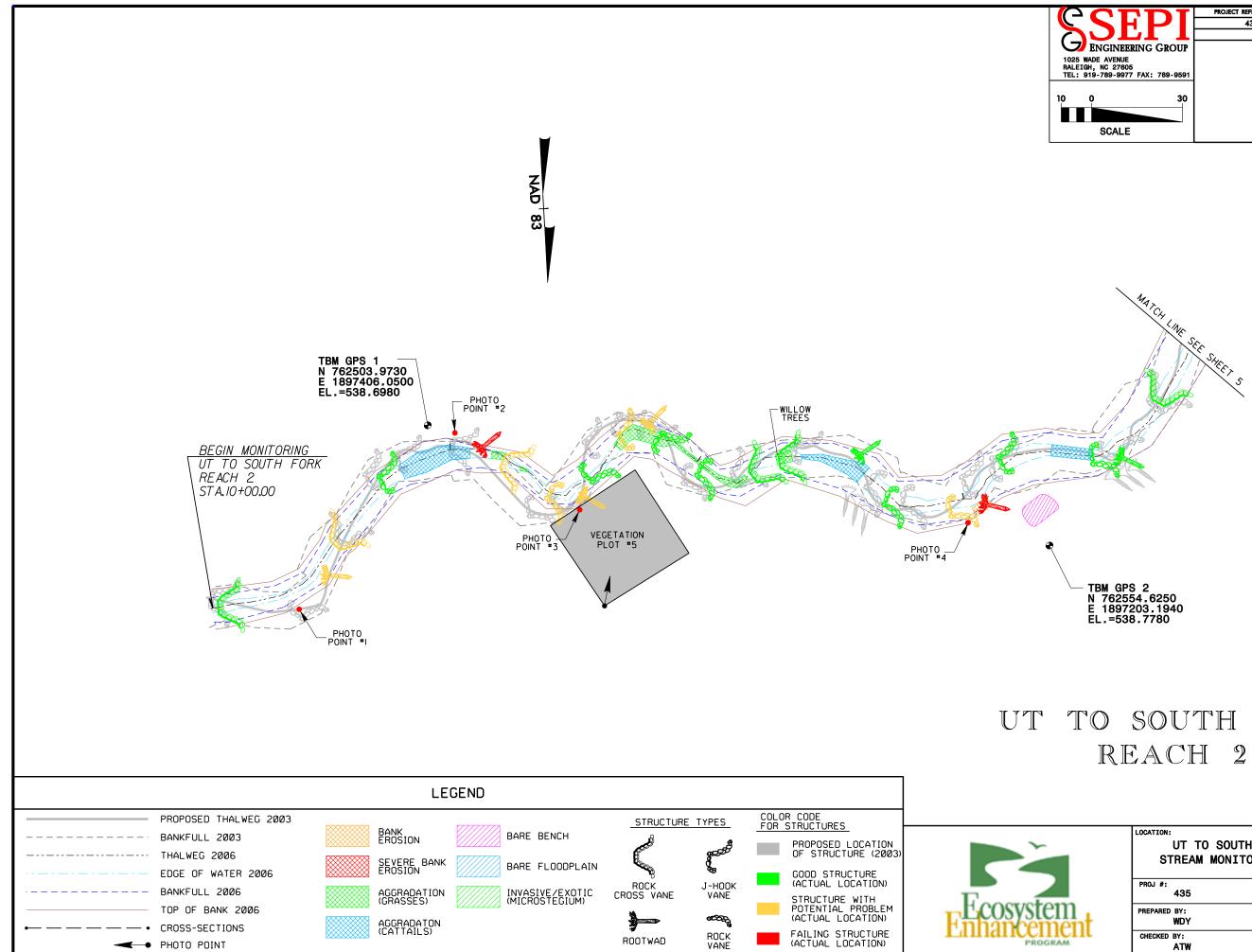
PEBBL	E COUNT						
Site:	UT to South I	Fork		SS	' L	'D	T
				2	Г		
Party:	ATW and WE	NV		ENO	GINEERI	NG GR	OUP
raity.					JIIIEDIG		00.
Date:	Apr-06			PA	RTICLE	COUNT	
	•			Subreach 3			
Inches	Particle	Millimeters		Cross-Section 9	TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	11	11	0.11	0.11
	Very Fine	.062125		8	8	0.08	0.19
	Fine	.12525	S A	17	17	0.17	0.36
	Medium	.2550		5	5	0.05	0.41
	Coarse	.50-1.0		14	14	0.14	0.55
.0408	Very Coarse	1.0-2		4	4	0.04	0
.0816	Very Fine	2.0-4.0		6	6	0.06	0.06
.1622	Fine	4-5.7	G \	7	7	0.07	0.13
.2231	Fine	5.7-8		5	5	0.05	0.18
.3144	Medium	8-11.3		9	9	0.09	0.27
.4463	Medium	11.3-16		3	3	0.03	0.3
.6389	Coarse	16-22.6	È –	1	1	0.01	0.31
.89-1.26	Coarse	22.6-32		5	5	0.05	0.36
1.26-1.77	Very Coarse	32-45		0	0	0	0.36
1.77-2.5	Very Coarse	45-64		2	2	0.02	0.38
2.5-3.5	Small	64-90		2	2	0.02	0.4
3.5-5.0	Small	90-128		0	0	0	0.4
5.0-7.1	Large	128-180	\Box	1	1	0.01	0.41
7.1-10.1	Large	180-256		0	0	0	0.41
10.1-14.3	Small	256-362		0	0	0	0.41
14.3-20	Small	362-512		0	0	0	0.41
20-40	Medium	512-1024	BOULDER	0	0	0	0.41
40-80	Large	1024-2048		0	0	0	0.41
	Bedrock		BDRK		0	0	0.41
					100	1	

PEBBLE						-	
Site:	UT to South I	Fork		SS	E	Ρ	Ι
Party:	ATW and WE	ΟY		ENG	INEERIN	NG GRO	DUP
Date:	Apr-06			PA	RTICLE	COUNT	
				Subreach 3			
Inches	Particle	Millimeters		Cross-Section 10	TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	12	12	0.1188	0.1188
	Very Fine	.062125		8	8	0.0792	0.198
	Fine	.12525	S A	17	17		
	Medium	.2550		5		0.0495	
	Coarse	.50-1.0		14		0.1386	0.5545
.0408	Very Coarse	1.0-2		4	4	0.0396	0
.0816	Very Fine	2.0-4.0	\square	6		0.0594	0.0594
.1622	Fine	4-5.7	G \	7	7		
.2231	Fine	5.7-8		5		0.0495	0.1782
.3144	Medium	8-11.3		9		0.0891	0.2673
.4463	Medium	11.3-16		3	3	0.0297	0.297
.6389	Coarse	16-22.6	È –	1	1	0.0099	0.3069
.89-1.26	Coarse	22.6-32		5	5		0.3564
1.26-1.77	Very Coarse	32-45		0	0		
1.77-2.5	Very Coarse	45-64		2	2	0.0198	0.3762
2.5-3.5	Small	64-90		2	2	0.0198	0.396
3.5-5.0	Small	90-128	COBBLE	0	0	0	0.396
5.0-7.1	Large	128-180		1	1	0.0099	0.4059
7.1-10.1	Large	180-256		0	0	0	0.4059
10.1-14.3	Small	256-362		0	0	0	0.4059
14.3-20	Small	362-512		0	0	0	0.4059
20-40	Medium	512-1024	(BOULDER)	0	0	0	0.4059
40-80	Large	1024-2048		0	0	0	
	Bedrock		BDRK		0	0	0.4059
					101	1	

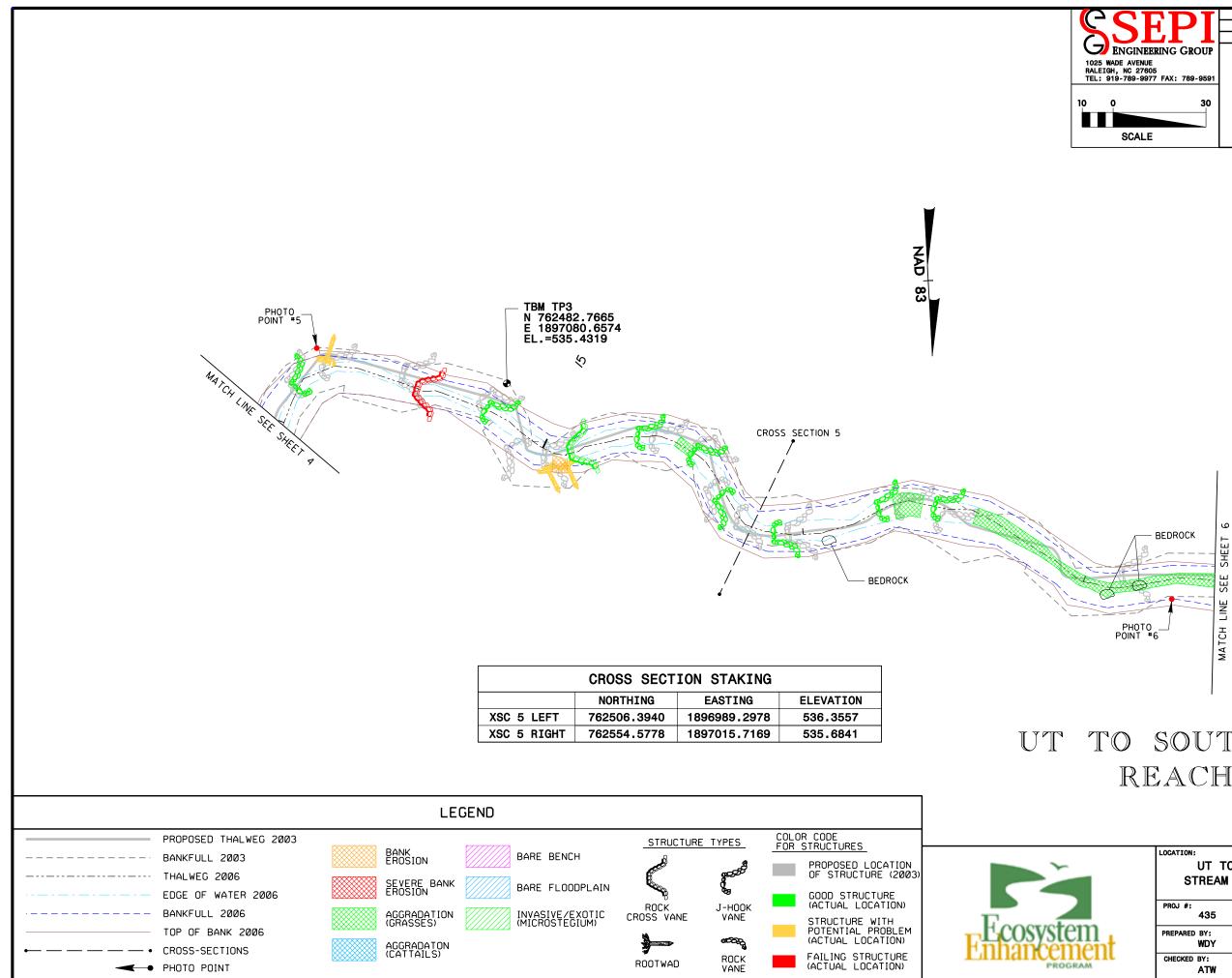

APPENDIX C PLAN VIEW SHEETS

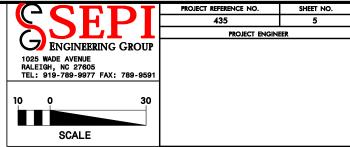


	PROJECT REFERENCE NO.	SHEET NO.
	435	1
	PROJECT ENGINI	EER
ENGINEERING GROUP		
1025 WADE AVENUE RALEIGH, NC 27605 TEL: 919-789-9977 FAX: 789-9591		
SCALE		

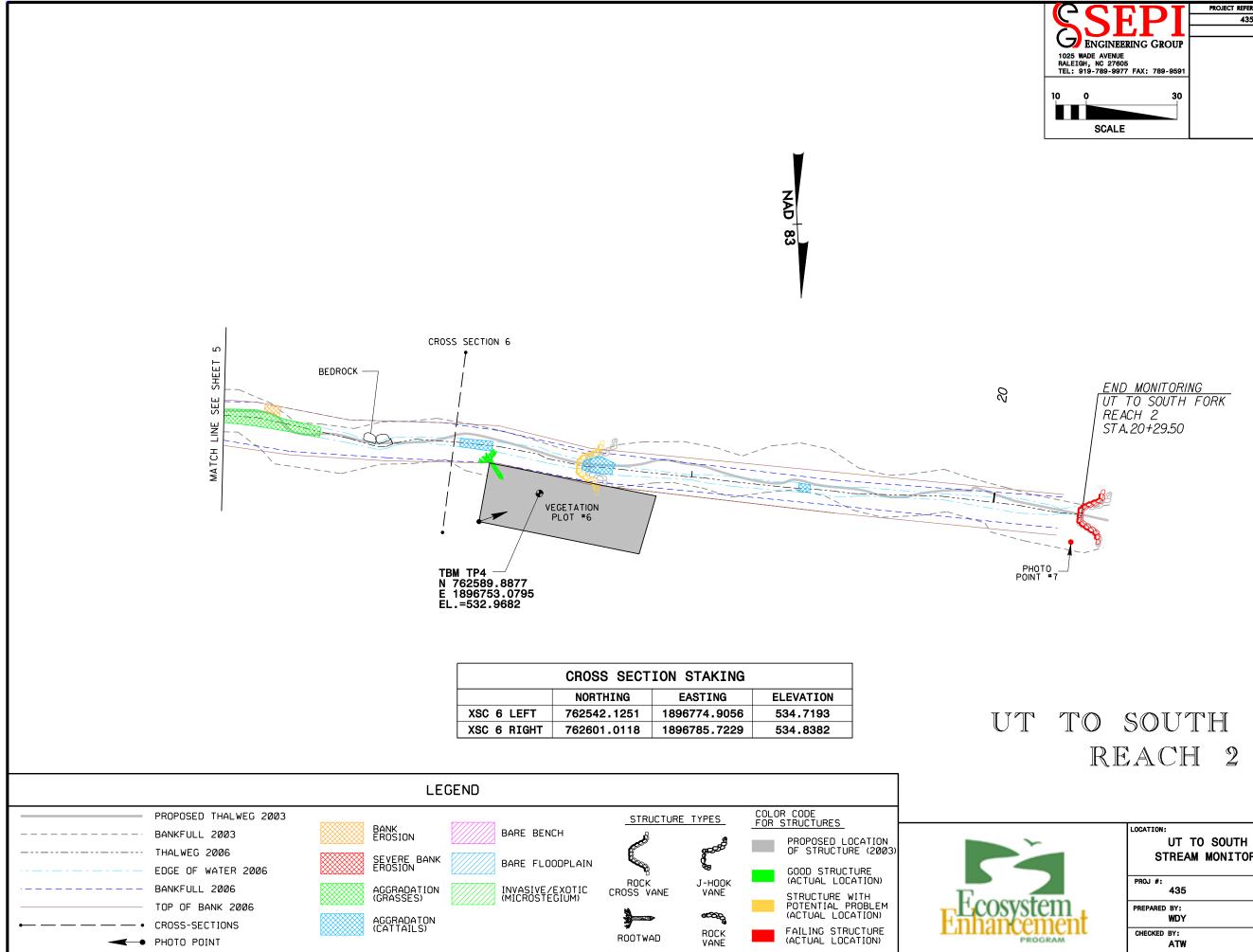

UT TO SOUTH FORK CREEK STREAM MONITORING - YEAR 1

COUNTY: ALAMANCE DATE: 11/17/06

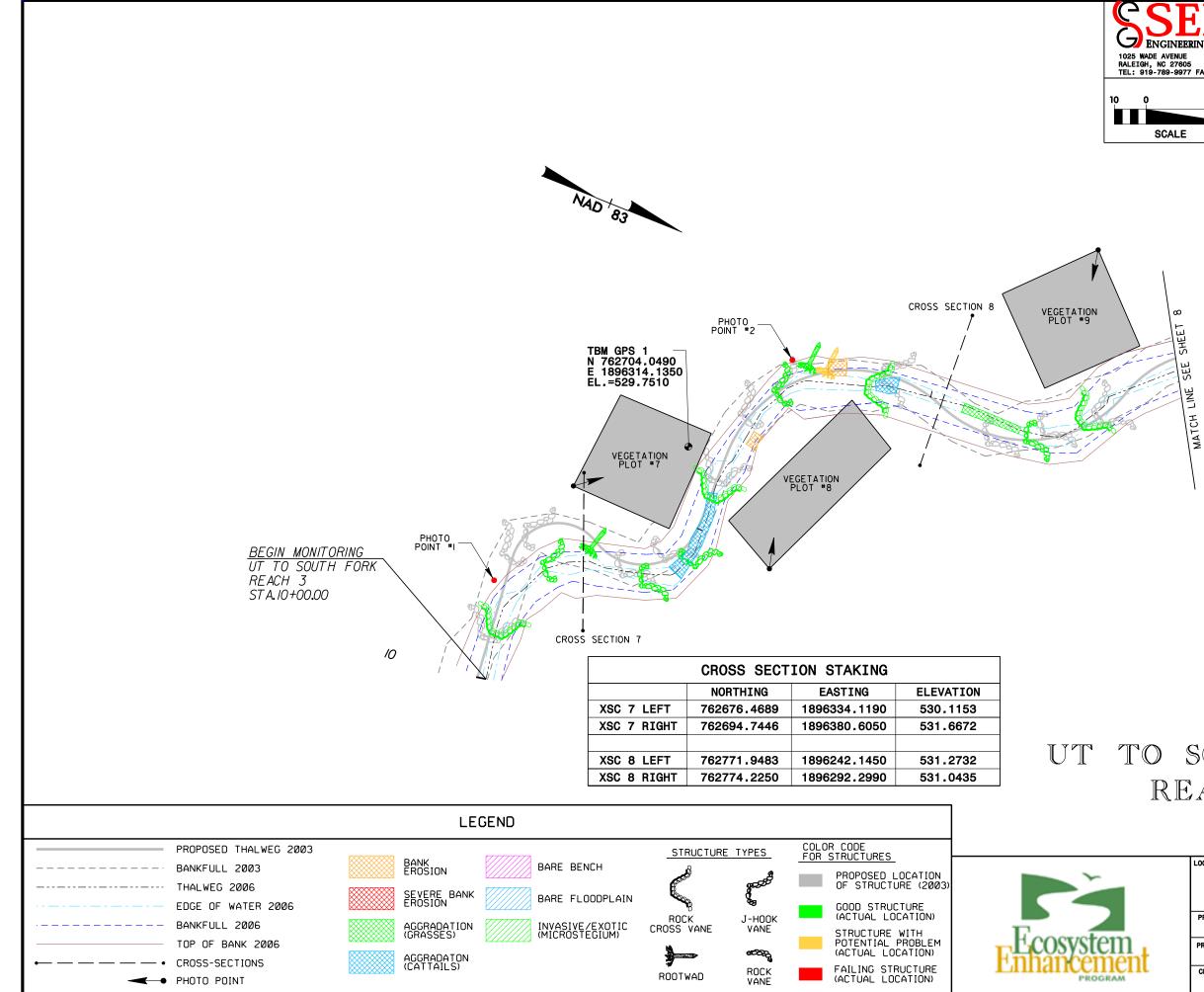

	CCT	ICI	PROJECT REFER		SHEET NO.
	こん		435	PROJECT ENGIN	3 EER
		RING GROUP			
	1025 WADE AVENUE RALEIGH, NC 27605	i			
	TEL: 919-789-9977	FAX: 789-9591			
	10 0	30			
	SCALE				
	SUALE				
			END	MONITOR	PING
	_!		/UT T	O SOUTH	i FORK
	PC	DINT #8	/ REAC		
			/ STA.2	21+51 . 46	
	•		è		
			5		
			<u> </u>		
	1941-1	1-			
. A					
		~			
J.					
1 di					
1 11-1	1) *				
.//					
TYT	\mathbb{TO}	SOU	TH	$\mathbb{P}\mathbb{O}$	$\mathbb{R}\mathbb{K}$
\cup 1			ппп	л	ДЦ У Ц
			LI 1		
		EAC			
		LOCATION:			
7			TO SOUTH		
		STREA	M MONITOF	RING - `	YEAR 1
		PROJ #:		COUNTY:	
		PROJ #: 435			MANCE
OSVSte	m.	PREPARED BY:			
ancen	nent	WDY			
PROG	RAM	CHECKED BY:		DATE:	7/06



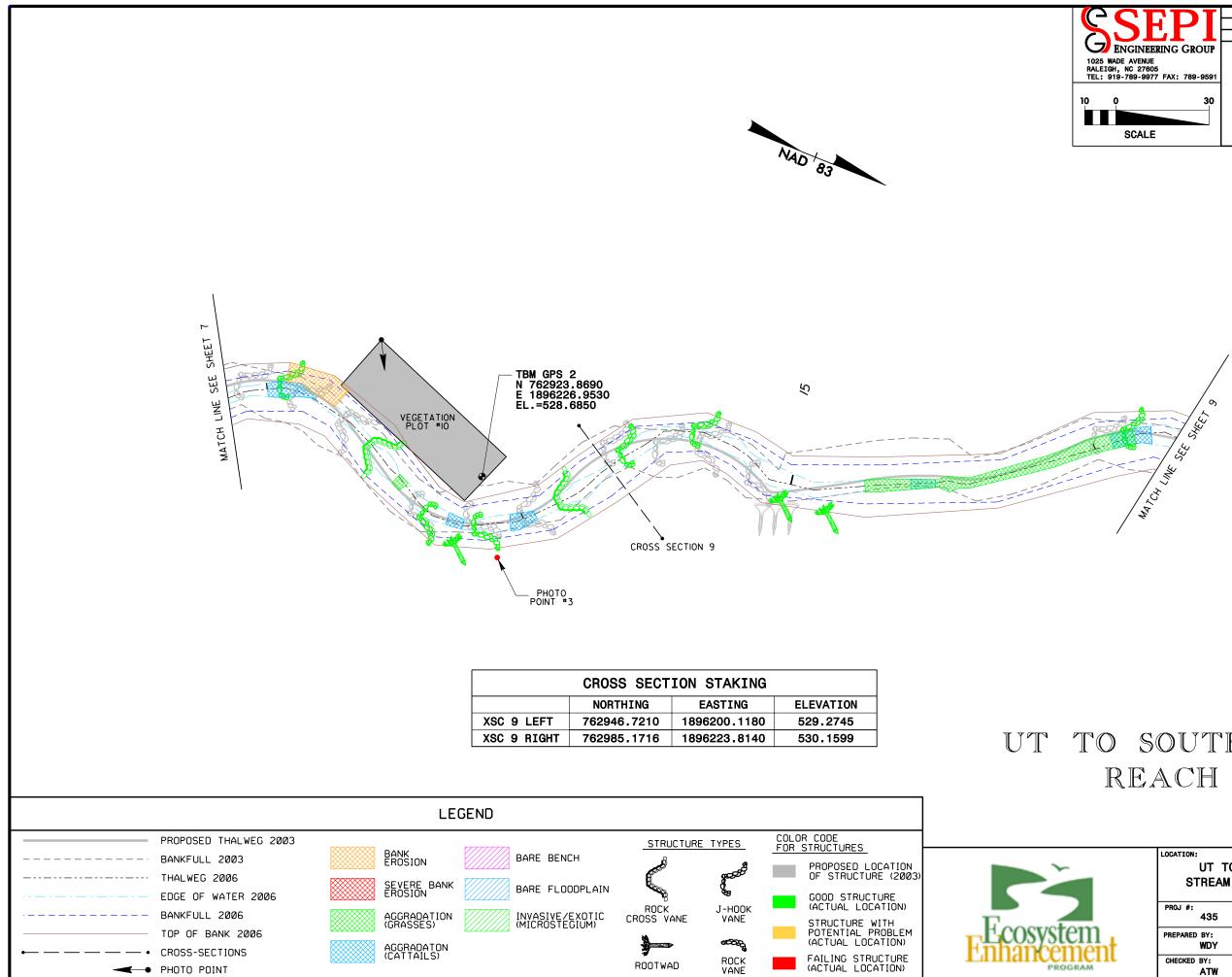
	PROJECT REFERENCE NO.	SHEET NO.
	435	4
	PROJECT ENGIN	EER
ENGINEERING GROUP		
1025 WADE AVENUE		
RALEIGH, NC 27605 TEL: 919-789-9977 FAX: 789-9591		
	1	
10 0 30		
SCALE		


UT TO SOUTH FORK

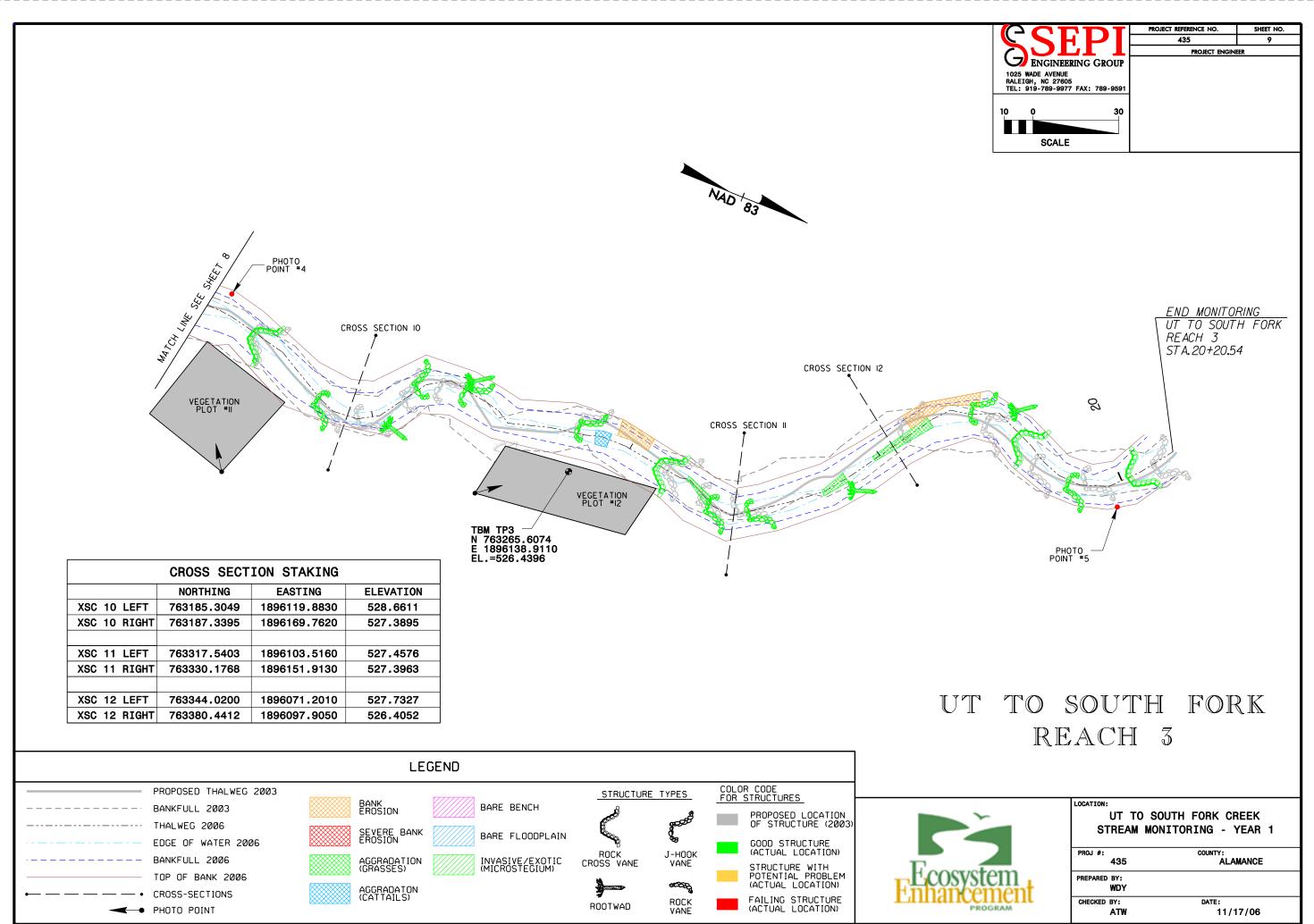
	LOCATION:	
7	UT TO SC	OUTH FORK CREEK
	STREAM MO	NITORING - YEAR 1
	PROJ #:	COUNTY:
	435	ALAMANCE
system .	PREPARED BY:	
ncement	WDY	
memen	CHECKED BY:	DATE:
PROGRAM	ATW	11/17/06


	LOCATION:	
~~	UT TO SC	OUTH FORK CREEK
	STREAM MON	NITORING - YEAR 1
	PROJ #:	COUNTY;
	435	ALAMANCE
system .	PREPARED BY:	
pement	WDY	
ite in the second second	CHECKED BY:	DATE:
PROGRAM	ATW	11/17/06

	PROJECT REFERENCE NO.	SHEET NO.
	435	6
	PROJECT ENGIN	EER
ENGINEERING GROUP		
1025 WADE AVENUE		
RALEIGH, NC 27605 TEL: 919-789-9977 FAX: 789-9591		
10 0 30		
SCALE		


UT TO SOUTH FORK

	LOCATION:			
~~	UT TO SC	UT TO SOUTH FORK CREEK		
	STREAM MON	STREAM MONITORING - YEAR 1		
	PROJ #:	COUNTY:		
	435	ALAMANCE		
system .	PREPARED BY:			
vement	WDY			
i i i i i i i i i i i i i i i i i i i	CHECKED BY:	DATE:		
PROGRAM	ATW	11/17/06		


	PROJECT REFERENCE NO.	SHEET NO.
	435	7
	PROJECT ENGIN	EER
ENGINEERING GROUP		
1025 WADE AVENUE RALEIGH, NC 27605 TEL: 919-789-9977 FAX: 789-9591		
10 0 30		
SCALE		

RE	EACH	3
~	LOCATION: UT TO SOUTH FORK CREEK STREAM MONITORING - YEAR 1	
	PROJ #: 435	COUNTY: ALAMANCE
osystem	PREPARED BY: WDY	
PROGRAM	CHECKED BY: ATW	date: 11/17/06

	PROJECT REFERENCE NO.	SHEET NO.
	435	8
	PROJECT ENGINEER	
ENGINEERING GROUP		
1025 WADE AVENUE		
RALEIGH, NC 27605 TEL: 919-789-9977 FAX: 789-9591		
10 0 30		
SCALE		

~	LOCATION: UT TO SOUTH FORK CREEK STREAM MONITORING - YEAR 1	
	PROJ #: 435	COUNTY: ALAMANCE
osystem	PREPARED BY: WDY	
PROGRAM	CHECKED BY: ATW	DATE: 11/17/06

